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Abstract

A periodic system of plane stamps is pressed onto an elastic half-plane by a central vertical force P applied to

each stamp. The contact area for each stamp is divided into an inner adhesive region and two outer slipping
regions, where Coulomb's law of dry friction applies. The system of singular integral equations on two di�erent
segments, which corresponds to the problem, is equivalent to a Wiener±Hopf equation for a two-components

vector, for which an analytical constructive solution is obtained. E�ective formulae for numerical computations for
the contact stresses are presented. The e�ect of friction and of the distance between the stamps on the length of
sliding zones is investigated. # 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

x, y two-dimensional Cartesian coordinates
u, v displacements
sy, txy stresses
s�x�, t�x� contact stresses
P applied force
E Young's modulus
n Poisson's ratio
a half-length of a stamp
2(cÿa ) distance between stamps
b half-length of the adhesion zone

* Corresponding author. Tel.: 00 44 01225 826 106; fax: 00 44 01225 826 492.

E-mail address: y.antipov@maths.bath.ac.uk (Y.A. Antipov)



1. Introduction

The fact that the stresses sy, txy change their sign in the vicinity of the point of the boundary between
the conditions of adhesion �u � v � 0� and a free boundary �sy � txy� was de®ned ®rst by Abramov
(1937). The investigations of Galin (1945) and Fal'kovich (1945) were among the ®rst publications,
where the mixed boundary conditions in the contact region were analysed. Fal'kovich proposed to
divide the contact zone into three sections in order to prevent the stresses from oscillating. The central

m coe�cient of friction
U�x, y� Airy stress function
k � 3ÿ 4n Muskhelishvili's constant
k�, kÿ, b parameters
l��x, x�, lÿ�x, x� Hilbert's kernels
t1�x� auxiliary function
ha0,a1 �0, b�, ha1,a2 �b, a� classes of solution
A1, A2, A0, B0, A

2
1 , B1 constants

c0, c1, c2, d � d1� id2 parameters
f��x� HoÈ lder function
Y �1�, Y �2�, Oj�x� � j � 0, . . . , 3� analytic functions
a0, a1, a2, a, a0, b0, g parameters
w1�t�, w2�t� solution of the system of integral equations with Cauchy kernels
wjÿ�t�, wj��t� � j � 1, 2� auxiliary (`ones-sides') functions
Fÿj �s�, F�j �s� � j � 1, 2� solution of the Wiener±Hopf problem
G contour of the Wiener±Hopf problem
G(s ) matrix coe�cient of the Wiener±Hopf problem
K0�s�, K1�s� elements of the matrix G�s�
f�s�, F�s� known vector and function
l< 1, g�, k0 parameters
G�s� Gamma function
K�0 �s�, Kÿ0 �s� factors in the splitting of the function K0�s�
D2 half-planes
O�j �s�, Oÿj �s� � j � 1, 2� analytic functions in D�, Dÿ

C2
j , D2

j , E2
j known coe�cients

F2
0 �s�, Cÿ1 �s�, S12�s�, S22�s� auxiliary functions

A2
j , Bj unknown residues

C arbitrary constant
D�0n, D

�
1n, D

ÿ
n coe�cients

A2
nj , Bnj solution of the in®nite linear algebraic system

f2nj , fnj coe�cients
a2
nkj, bnkj coe�cients of the expansion on l of A2

nj , Bnj

Nb, Ka, La stress intensity factors
R1�t�, R2�t� auxiliary functions
Gn, G0n, G1n, G2n coe�cients
Ij�t�, I�k�j �t�, � j, k � 1, 2� integrals
F�a, b; c; x� Gaussian hypergeometric function
Fkj�t�, F�n; t�, F��n; t� series
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one is the adhesion zone and the two outer edge ones are the slipping zones without friction. Fal'kovich
reduced this problem to an integrable case of a Fuch's di�erential equation and obtained exact formulae
for the contact stresses. It was found that the characteristic equation which determines the length of the
slide zone has a denumerable set of roots. Fal'kovich rejected the ®rst root leading to Sadowsky's
solution (Sadowsky, 1928)

sy � ÿ P

p
����������������
a2 ÿ x2
p , txy � 0 �1:1�

and found a di�erent solution de®ned by the second root of the characteristic equation. In this case the
tangential stresses have variable signs only at zero and the length of the slipping zones is approximately
equal to 0:003a. Fal'kovich's solution varies monotonically in the neighbourhood of the ends, but the
normal stresses have variable signs in the adhesion region. This means that neglecting friction in the
sliding zone in the appropriate contact problems is not correct.

Galin's solution (Galin, 1945) does not have this de®ciency. The contact area is divided into an
intermediate zone of adhesion and two zones of slippage where dry friction applies: jtxyj � mjsyj. Galin
constructed the solution by the approximate method based on conformal mapping of a region closed to
the given one to the upper half-plane and the reduction to two Hilbert problems. Galin's solution
becomes Sadowsky's solution (1.1) but not Fal'kovich's solution as the coe�cient of friction m tends to
zero.

Another situation is the problem of an interface crack (Antipov, 1995): the boundary conditions do
not degenerate as m4 0 and the corresponding solution becomes Comninou's solution (Comninou,
1977) but not the solution on a sliding crack. This essential di�erence occurs because in the punch
problem, the length of the slipping zone is determined from the boundedness of the solution at the point
of transition from slippage to bonding, while the length of the corresponding zone in the problem on an
interface crack is found from the boundedness when passing from slippage to separation.

Spence (1973) proved that there is a denumerable set of solutions when the stresses are restricted at
the point of transition from bonding to slippage. Nevertheless, only the greatest sliding zone out of the
possible ones leads to the solution that satis®es all additional conditions of the problem. With the help
of piecewise constant interpolation of the contact stresses, Spence obtained a numerical solution of the
system of Volterra's equation, to which the problem is equivalent.

Antipov and Arutyunyan (1991, 1992) constructed an analytical solution of Galin's problem in the
symmetric and non-symmetric case for a half-plane and a wedge, for a stamp with straight horizontal
and wedge-shaped base. In the present paper an analytical solution of Galin's problem for a periodic
system of stamps is presented.

2. Formulation of the problem

Let us consider a periodic system of stamps

C � � ÿ a, a� [ �22c3a, 22c2a� [ �24c3a, 24c2a� [ . . . �2:1�

pressed down onto an elastic half-plane �jxj<1, ÿ1< y< 0� with Young's modulus E and Poisson's
ration n under the action of vertical force P applied to the centre of each stamp (Fig. 1). The contact
area S is divided into zones of adhesion

A � � ÿ b, b� [ �22c3b, 22c2b� [ �24c3b, 24c2b� [ � � � �2:2�
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and zones of slippage CnA where the conditions of dry friction apply. The quantity b has to be
determined. Outside the contact zone, the half-plane boundary is free from loading.

By taking into account the periodic properties we formulate the above stated problem as the
boundary value problem of the theory of two-dimensional elasticity for the half-strip �0< x< c,
ÿ1< y< 0�

y � 0: sy � 0, txy � 0, a< x< c; txy � msy � 0, b< x< a, �2:3�

y � 0: u � 0, 0< x< b; v � ÿd, 0< x< a, �2:4�

x � 0: u � 0, txy � 0, ÿ1< y< 0, �2:5�

x � c: u � 0, txy � 0, ÿ1< y< 0, �2:6�
where d is an additive constant and m is the coe�cient of friction. The following condition of stress
equilibrium has to be satis®ed�a

0

sy�x, 0� dx � ÿP
2
: �2:7�

The shear stresses in the adhesive region are too small to create slippage: txy<ÿ msy. The normal
stresses everywhere in the contact area must be negative.

Let s�x� and t�x� denote the contact stresses

s�x� � sy�x, 0�, t�x� � txy�x, 0�: �2:8�
The above problem can be reduced to the boundary value problem for the biharmonic function in the
half-strip

D2U�x, y� � 0, 0< x< c, ÿ1< y< 0, �2:9�

@2U

@x2
�x, 0� � s�x�, ÿ @2U

@x @y
�x, 0� � t�x�, 0< x< c, �2:10�

supp s�x� � �0, a�, supp t�x� � �0, a�, �2:11�

Fig. 1. Geometry of the problem: a half-plane with the periodic system of stamps.
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@U

@x
�0, y� � @U

@x
�c, y� � 0,

@3U

@x3
�0, y� � @3U

@x3 �c, y� � 0, ÿ1< y< 0 , �2:12�

where U�x, y� is the Airy stress function.

3. Reduction to a system of singular integral equations

Applying the ®nite cosine-transformation with respect to x

Un�y� �
�x
0

U�x, y� cos bnx dx, b � p
c
, �3:1�

U�x, y� � 1

c
U0�y� � 2

c

X1
n�1

Un�y� cos bnx �3:2�

to the boundary value problem (2.9)±(2.12) we arrive at the following problem for the one-dimensional
equation 

d4

dy4
ÿ 2b2n2

d2

dy2
� b4n4

!
Un�y� � 0, ÿ1< y< 0 , �3:3�

Un�0� � ÿ sn
b2n2

,
d

dy
Un�0� � tn

bn
, Un�y�4 0, y4 ÿ1, �3:4�

sn �
�a
0

s�x� cos bnx dx, tn �
�a
0

t�x� sin bnx dx, n � 1, 2, . . . : �3:5�

The solution of this problem that vanishes as y4 ÿ1 has the form

Un�y� � � ÿ 1� nby� enby

n2b2
sn � y enby

nb
, n � 1, 2, . . . : �3:6�

Obviously, in the case n � 0 there is no non-trivial solution of eqn (3.3) under the additional condition
U0�y�4 0, y4ÿ1. So that U0�y� � 0. Next, inverting the integral transformation, we use the formulae
which connect the displacement with the Airy function (plane deformation)

1

n�
@u

@x
� �1ÿ n�@

2U

@y2
ÿ n

@2U

@x2
,

1

n�
@v

@y
� �1ÿ n�@

2U

@x2
ÿ n

@2U

@y2
, n� � 1� n

E
�3:7�

and obtain the following relationships

1

n�
@u

@x
�x, y� � 2

c

X1
n�1

cos nbx enby
��kÿ � nby�sn � �k� � nby�tn

�
, �3:8�
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1

n�
@v

@x
�x, y� � 2

c

X1
n�1

sin nbx enby
�� ÿ kÿ � nby�tn � � ÿ k� � nby�sn

�
, �3:9�

where k2 � �k21�=2, k � 3ÿ 4n:
Substituting expressions (3.5) into (3.8) we change the order of the integration and summation and

arrive at the representation for the derivative of the tangentional displacement

1

n�
@v

@x
�x, y� � 2

c

�a
0

s�x�
X1
n�1

cos nbx cos nbx enby�kÿ � nby� dx

� 2

c

�a
0

t�x�
X1
n�1

cos nbx sin nbx enby�k� � nby� dx:
�3:10�

We summarise the series in (3.10) using the formulae (1.447 1, 2) (Gradshtein and Ryzhik, 1965) and
transform expression (3.10) to the form

1

n�
@u

@x
� 1

c

�a
0

�
S�1 �xÿ x, y� � S�1 �x� x, y��s�x� dx� 1

c

�a
0

�
S�2 �xÿ x, y� � S�2 �x� x, y��t�x� dx: �3:11�

The tangentional derivative of the normal displacement can be calculated in a similar way

1

n�
@v

@x
� 1

c

�a
0

�
Sÿ2 �xÿ x, y� ÿ Sÿ2 �x� x, y��s�x� dx� 1

c

�a
0

�
Sÿ1 �xÿ x, y� ÿ Sÿ1 �x� x, y��t�x� dx: �3:12�

The following notations are assumed in the relations (3.11) and (3.12)

S2
1 �t, x� �2

kÿ eby
ÿ
cos btÿ eby

�
1ÿ 2 eby cos bt� e2by

� by eby cos bt
ÿ
1� e2by

�
ÿ 2 ebyÿ

1ÿ 2 eby cos bt� e2by
�2 , �3:13�

S2
2 �t, x� �

k� eby sin bt
1ÿ 2 eby cos bt� e2by

2
by eby sin bt�1ÿ e2by�ÿ
1ÿ 2 eby cos bt� e2by

�2 : �3:14�

In order to satisfy the boundary conditions (2.4), we study the behaviour of the functions (3.13) and
(3.14) as y4ÿ 0. Expansion of the functions eby and cos bt in the neighbourhood of the points y � 0
and t � 0, respectively and use of the approximation of the d-function (see Korn and Korn, 1961) yield
us

eby
ÿ
cos btÿ eby

�
1ÿ 2 eby cos bt� e2by

0
ÿbyÿ b2

2

ÿ
t2 � y2

�
� � � �

b2y2 � b2t2 � � � � 0ÿ y

b
ÿ
t2 � y2

� ÿ 1

2
0pd�t�

b
ÿ 1

2
, y4ÿ 0: �3:15�

In a similar way, one can obtain as y4ÿ 0

by eby cos bt
ÿ
1� e2by

�
ÿ 2 ebyÿ

1ÿ 2 eby cos bt� e2by
�2 0y

b
y2 ÿ t2ÿ
y2 � t2

�201

b

"
y

y2 � t2
ÿ 2yt2ÿ

y2 � t2
�2
#
0p

b

�ÿ d�t� ÿ td0�t�� � 0, �3:16�
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eby sin bt
1ÿ 2 eby cos bt� e2by

01

2
cot

bt
2
, �3:17�

by eby sin bt�1ÿ e2by�ÿ
1ÿ 2 eby cos bt� e2by

�200, �3:18�

we arrive at the following integral representations for the derivatives of the displacements

1

n�
@u

@x
�x, ÿ 0� � kÿs�x� � k�

p

�a
0

l��x, x�t�x� dxÿ kÿ
c

�a
0

s�x� dx, �3:19�

1

n�
@v

@x
�x, ÿ 0� � ÿkÿt�x� � k�

p

�a
0

lÿ�x, x�s�x� dx, �3:20�

where

l2�x, x� � b
2

�
cot

b
2
�xÿ x�2 cot

b
2
�x� x�

�
: �3:21�

Let us use the third condition in (2.3) of dry friction txy � msxy � 0, that is true on the segment �b, a�.
We introduce the new function

t1�x� � t�x� � ms�x�, supp t1�x� � �0, b�: �3:22�

Taking into account the equilibrium condition (2.7) we rewrite formulae (3.19) and (3.20) in terms of the
functions s�x� and t1�x�

1

n�
@u

@x
�x, ÿ 0� � kÿs�x� � k�

p

�a
0

l��x, x�
�
t1�x� ÿ ms�x�� dx� Pkÿ

2c
, �3:23�

1

n�
@n
@x
�x, ÿ 0� � ÿkÿt1�x� � kÿms�x� � k�

p

�a
0

lÿ�x, x�s�x� dx: �3:24�

Satisfaction of the boundary conditions

@u

@x
�x, ÿ 0� � 0, 0 < x < b;

@v

@x
�x, ÿ 0� � 0, 0 < x < a �3:25�

and use of the property (3.22) yield the following system of two integral equations on di�erent segments
with Hilbert's kernels

kÿs�x� ÿ mk�
p

�a
0

l��x, x�s�x� dx� k�
p

�b
0

l��x, x�t1�x� dx � ÿPkÿ
2c

, 0 < x < b, �3:26�

kÿms�x� � k�
p

�a
0

lÿ�x, x�s�x� dxÿ kÿt1�x� � 0, 0 < x < a: �3:27�
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4. Analysis of the system of integral equations

The contact problem in the half-strip (2.3)±(2.6) has been reduced to the system of integral equations
(3.26) and (3.27). Let us introduce the class of solutions. A function f�x�, which satis®es everywhere on
(0, l), except possibly its ends, the HoÈ lder condition, has at the points x � 0 and x � l an integrable
singularity

f�x� � A0x
ÿa0 , x4� 0, f�x� � A1�lÿ x�ÿa1 , x4 lÿ 0,

Aj � const, Raj 2 �0, 1�, j � 0, 1, �4:1�

is said to belong to the class ha0,a1 �0, l �. The functions s�x�, t1�x� are sought in the following class

s�x� 2 ha0,a1 �0, b� [ ha1,a2 �b, a�, t1�x� 2 ha0,a1 �0, b�: �4:2�

In other words, we admit integrable singularities for unknown functions at the points 0, b and a. In
order to de®ne the quantities a0, a1 and a2 a priori, we split the Hilbert kernel into the Cauchy kernel
and a regular function

cot x � 1

x
� B�x�, �4:3�

where

B�x� � ÿx
3
ÿ x3

45
ÿ � � � 2

2nBnx
2nÿ1

�2n�! ÿ � � � , x2< p2 �4:4�

and Bn are Bernoulli's numbers. Next, we use the Muskhelishvili formulae (Muskhelishvili, 1953;
Gakhov,1966) that de®ne the behaviour of the Cauchy type integral at the points at which the density
has a power singularity

1

p

�c2
c1

f��x� dx

�xÿ c0 �d�xÿ x� �
�

edpi

sin dp
f��c0 � 0� ÿ cot dpf��c0 ÿ 0�

�
�xÿ c0 �ÿd � Y �1��x�, x4 c0 ÿ 0, �4:5�

1

p

�c2
c1

f��x� dx

�xÿ c0 �d�xÿ x� �
�

cot dpf��c0 � 0� ÿ eÿdpi

sin dp
f��c0 ÿ 0�

�
�xÿ c0 �ÿd � Y �2��x�, x4 c0 � 0, �4:6�

where f��x� is a function which satis®es the HoÈ lder condition on the closed segment �c1, c2�, c1Ec0Ec2 ;
d � d1� id2, 0Ed1<1; Y �1��x�, Y �2��x� are functions analytic in the vicinity of the point c0. The values of
the function �xÿ c0�ÿg are speci®ed by

�xÿ c0�ÿd� jxÿ c0jÿd, x > c0, �xÿ c0�ÿd � eÿdpijxÿ c0jÿd, x < c0: �4:7�

Let us assume that

s�x�0A0x
ÿa0 , t1�x�0B0x

ÿa0 , x4 � 0, �4:8�

s�x�0A2
1 �xÿ b�ÿa1 , x4 b20; t1�x�0B2

1 �xÿ b�ÿa1 , x4 bÿ 0, �4:9�
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s�x�0A2�xÿ a�ÿa2 , x4 aÿ 0: �4:10�
Using formula (4.5) in the case c1 � 0, c0 � c2 � a from eqn (3.27) we obtain as x4 aÿ 0

�mkÿ ÿ k� cot a2p�A2�xÿ a�ÿa2 � O0�x�, x4 a, �4:11�
where O0�x� is an analytic function in the neighbourhood of the point a. Eqn (4.11) yields immediately

mkÿ ÿ k� cot a2p � 0: �4:12�
Taking into account that Ra2 2 �0, 1� we ®nd

a2 � 1

p
tanÿ1

1

mg
, g � kÿ

k�
: �4:13�

Now we consider the vicinity of the point b. At ®rst, we apply formulae (4.5) and (4.6) to the analysis of
the behaviour of the left-hand-side of eqns (3.26) and (3.27) as x4 bÿ 0�

kÿAÿ1 ÿ mk�

�
ea1pi

sin a1p
A�1 ÿ cot a1pAÿ1

�
ÿ k� cot a1pB1

�
�xÿ b�ÿa1� O1�x�, �4:14�

�
kÿmAÿ1 � k�

�
ea1pi

sin a1p
A�1 ÿ cot a1pAÿ1

�
ÿ kÿB1

�
�xÿ b�ÿa1� O2�x�: �4:15�

On the other hand, eqn (3.27) yields as x4 b� 0�
�kÿm� k� cot a1p�A�1 ÿ

k�eÿa1pi

sin a1p
Aÿ1

�
�xÿ b�ÿa1� O3�x�: �4:16�

The functions Om�x� �m � 1, 2, 3� are analytic in the vicinity of the point x � b. Consequently, the
expressions in the square brackets should be equal to 0. A non-trivial solution of this homogeneous
algebraic system with respect to A1,A2 and A3 exists if and only if the determinant

D�a1� � ÿk�kÿm� k� cot a1p� �4:17�
of the system is equal to 0. The equation D�a1� � 0 in the strip 0 < Ra1 < 1 has a single root

a1 � 1ÿ 1

p
tanÿ1

1

mg
: �4:18�

Let us consider the point x � 0. Formulae (4.5) and (4.6) and eqns (3.26) and (3.27) yield the following
system of two equations�

kÿ ÿ mk� cot
a0p
2

�
A0 � k� cot

a0p
2

B0 � 0, �4:19�

�
kÿmÿ k� tan

a0p
2

�
A0 ÿ kÿB0 � 0: �4:20�

Since the determinant of this system is equal to k and k 6� 0 we see that both functions s�x� and t1�x� as
well as their derivatives cannot have power singularities at the point 0. On the other hand, the physical
sense of the functions s�x� and t1�x� leads to boundedness of these functions at the point 0. The same
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result can be obtained if we assume a0 � 0 in formulae (4.8)±(4.10) and apply the analogue of relations
(4.5) and (4.6) for the case d � 0 (see Gakhov, 1966) to eqns (3.26) and (3.27).

Thus, the functions s�x� and t1�x� should be determined in the class

s�x� 2 h0,1ÿa�0, b� [ h1ÿa,a�b, a�, t1�x� 2 h0,1ÿa�0, b�, �4:21�

a � 1

p
tanÿ1

1

mg
2 �0, 1�: �4:22�

Additionally, the function s�x� satis®es the complementary condition�a
0

s�x� dx � ÿP
2
: �4:23�

The solution of system (3.26) and (3.27) can be constructed numerically if we split the Hilbert kernels
into two parts (4.3) and (4.4) where for large values of x we can assume B�x� � cot xÿ xÿ1. Then, the
numerical technique that was used by Spence (see Spence, 1972) for the corresponding homogeneous
characteristic system with Cauchy kernels, can be applied. We propose an analytical approach.

5. Solution of the system of integral equations

In order to reduce system (3.26) and (3.27) to a matrix Wiener±Hopf problem, we should transform
the equations with Hilbert kernels to the Mellin convolution type equations. Let us introduce the new
variables and parameters

t � tan
bx
2
, t � tan

bx
2
,

a0 � tan
ab
2
, b0 � tan

bb
2

�5:1�

and the new unknown functions w1�t�, w2�t� connected with the old ones through the relationships

s�x� � P

2c cos2�bx=2�w1
�

tan
bx
2

�
, t1�x� � P

2c cos2�bx=2�w2
�

tan
bx
2

�
: �5:2�

Then taking into account the identities

cot
b
2
�x2x� �3t� t2 � 1

t2t
, cos2

bx
2
� 1

t2 � 1
�5:3�

as well as the condition�a0
0

s
�
2

b
tanÿ1t

�
dt

t2 � 1
� ÿPb

4
, �5:4�

that follows from (4.23), we reduce system (3.26) and (3.27) to the system of integral equations with
Cauchy kernels
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gw1�t� ÿ
m
p

�a0
0

2tw1�t�
t2 ÿ t2

dt� 1

p

�b0
0

2tw2�t�
t2 ÿ t2

dt � ÿ g
t2 � 1

, 0 < t < b0, �5:5�

gmw1�t� ÿ gw2�t� �
1

p

�a0
0

2tw1�t�
t2 ÿ t2

dt � t

t2 � 1
, 0 < t < a0, �5:6�

where g was determined in (4.13) and the unknown functions are expressed through the contact stresses
as follows

w1�t� �
2c

P�t2 � 1�s
�
2

b
tanÿ1t

�
, �5:7�

w2�t� �
2c

P�t2 � 1�t1
�
2

b
tanÿ1t

�
: �5:8�

According to the analysis in the previous section, the solution of system (5.5) and (5.6) must be sought
in the class

w1�t� 2 h0,1ÿa�0, b0� [ h1ÿa,a�b0, a0 �, w2�t� 2 h0,1ÿa�0, b0�, �5:9�

whereas the function w1�t� satis®es the complementary condition�a0
0

w1�t� dt � ÿp
2
: �5:10�

First, extend the de®nition of system (5.5) and (5.6) over the entire positive half-axis using the functions
w1��t� and w2��t� so that supp w1� � �b0,1�, supp w2� � �a0,1� and

gw1ÿ�t� ÿ
2m
p

�1
0

w1ÿ�t�

1ÿ
�
t

t

�2

dt
t
� 2

p

�1
0

w2ÿ�t�

1ÿ
�
t

t

�2

dt
t
� ÿ g

t2 � 1
� w1��t�, 0 < t <1, �5:11�

mgw1ÿ�t� ÿ gw2ÿ�t� �
2

p

�1
0

t

t
w1ÿ�t�

1ÿ
�
t

t

�2

dt
t
� t

t2 � 1
� w2��t�, 0 < t <1, �5:12�

where

w1ÿ�t� �
(
w1�t�, 0 < t < a0

0 t > a0
, w2ÿ�t� �

(
w2�t�, 0 < t < b0

0 t > b0
: �5:13�

Next, we introduce the Mellin transforms

Fÿ1 �s� �
�1
0

w1ÿ�a0t�ts dt, Fÿ2 �s� �
�1
0

w2ÿ�b0t�ts dt, �5:14�
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F�1 �s� �
�1
1

w1��b0t�ts dt, F�2 �s� �
�1
1

w2��a0t�ts dt: �5:15�

According to the behaviour (5.9) of the functions wj�t� at the point 0 and the asymptotics of the
functions wj��t� at in®nity that follow from eqns (5.11) and (5.12), the unknown functions Fÿj �s� are
analytic in the right half-plane R�s� > ÿ1 and F�j �s� ( j=1, 2) are unknown analytic functions in the left
half-plane R�s�<2ÿ j. Taking into account the values of integrals (Gradshtein and Ryzhik, 1965)�1

0

xs

1ÿ x2
dx � ÿp

2
tan

ps
2
,

�1
0

xs

1� x2
dx � p

2 cos
ps
2

, ÿ 1< R�s�< 1, �5:16�

we use the convolution theorem (see the Appendix) and arrive at the 2� 2 matrix Wiener±Hopf
problem. It is required to ®nd two vectors: FFF��s�, analytic in the domain D�: R�s�< g0�ÿ1< g0 < 0�,
and FFFÿ�s�, analytic in the domain Dÿ: R�s� > g0, which satisfy on the contour G: R�s� � g0 the
following boundary condition

FFF��s� � G�s�FFFÿ�s� � f�s�, s 2 G, �5:17�

G�s� �

0B@ lÿsÿ1K1�s� ÿtan
ps
2

K0�s� ÿgls�1

1CA, FFF2�s� �
 
FFF2

1 �s�
FFF2

2 �s�

!
, �5:18�

K1�s� � g� m tan
ps
2
, K0�s� � mg� cot

ps
2
, �5:19�

f�s� �
 

gbÿsÿ10 F�s�
ÿaÿsÿ10 F�s� 1�

!
, F�s� � p

2 cos
ps
2

, �5:20�

l � b0
a0

, 0< l< 1: �5:21�

Derive the function Fÿ1 �s� from the second equation in system (5.17)

Fÿ1 �s� �
F�2 �s� � aÿsÿ10 F�s� 1� � gls�1Fÿ2 �s�

K0�s� �5:22�

and substitute it into the ®rst one. The matrix Wiener±Hopf problem can be rewritten in the di�erent
form

ls�1F�1 �s� ÿ gaÿsÿ10 F�s� � K1�s�
K0�s�

�
F�2 �s� � aÿsÿ10 F�s� 1��ÿ g�l

s�1

K0�s� F
ÿ
2 �s�, �5:23�

F�2 �s� � aÿsÿ10 F�s� 1� � K0�s�Fÿ1 �s� ÿ gl s�1Fÿ2 �s�, s 2 G, �5:24�

where g� � 1ÿ g2. In order to factorize the function K0�s�, we present it as follows
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K0�s� �
sin p

�
s

2
� a

�
sin

ps
2

sin pa
, �5:25�

where the parameter a is the same as that in (4.22). Further, if we use the formula

G�s�G�1ÿ s� � p
sin ps

, �5:26�

where G�x� is the Euler integral of the second kind (the Gamma function) then we arrive immediately at
the following splitting of the function K0�s�

K0�s� � K�0 �s�Kÿ0 �s�, s 2 G, �5:27�

K�0 �s� � ÿ
k0G

�
ÿ s

2

�
G
�
1ÿ aÿ s

2

� , Kÿ0 �s� �
G
�
1� s

2

�
G
�
a� s

2

� , k0 � 1

sin pa
: �5:28�

Next, we substitute the splitting (5.27) into eqns (5.23) and (5.24) and multiply both parts of these
equations by the function lÿsÿ1K�0 �s� and �K�0 �s��ÿ1, respectively. Thus, we transform the eqns (5.23) and
(5.24) into the form

ÿg�Fÿ2 �s�
Kÿ0 �s�

� K�0 �s�F�1 �s� ÿ
pgbÿsÿ10 K�0 �s�

2 cos
ps
2

ÿ K1�s�lÿsÿ1
Kÿ0 �s�

24F�2 �s� ÿ paÿsÿ10

2 sin
ps
2

35, �5:29�

F�2 �s�
K�0 �s�

ÿ paÿsÿ10

2 sin
ps
2
K�0 �s�

� Kÿ0 �s�Fÿ1 �s� ÿ
gls�1Fÿ2 �s�

K�0 �s�
, s 2 G: �5:30�

Let us ®nd sectionally-analytic functions Oj�s� �j � 1, 2� vanishing at in®nity and undergoing in passing
through the contour G jumps

O�1 �s� ÿ Oÿ1 �s� �
pbÿsÿ10

2

24 K1�s�
Kÿ0 �s�sin

ps
2

ÿ lK�0 �s�
cos

ps
2

35, s 2 G, �5:31�

O�2 �s� ÿ Oÿ2 �s� �
ÿpaÿsÿ10

2K�0 �s�sin
ps
2

, s 2 G: �5:32�

In the case b0 > 1 for the function O�1 �s� the expansion in simple fractions takes place

O�1 �s� �
X1
j�1

C�j
sÿ 2j� 1

, s 2 D�, C�j �
mg�� ÿ 1� jbÿ2j0 G

ÿ
a� jÿ 1

2

�
G
ÿ
j� 1

2

� : �5:33�

Obviously, the function Oÿ1 �s� admits the analytical continuation in the right half-plane Dÿ that is
de®ned by the relationship
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Oÿ1 �s� � O�1 �s� ÿ
pmg�bÿsÿ10

2Kÿ0 �s� cos
ps
2

, s 2 Dÿ, �5:34�

which follows directly from (5.31). In the case b0 < 1 the function Oÿ1 �s� has the form

Oÿ1 �s� � ÿ
X1
j�1

�
Cÿj

s� 2jÿ 1
� Dÿj

s� 2j� 2aÿ 2

�
, s 2 Dÿ; �5:35�

Cÿj �
k0g�b

2jÿ2
0 G

ÿ
jÿ 1

2

�
� ÿ 1� jgGÿjÿ a� 1

2

� , Dÿj �
g�b

2j�2aÿ3
0 G�jÿ 1� a�
� ÿ 1� jÿ1gG� j�

, �5:36�

and the analytical continuation for the function O�1 �s� follows directly from (5.34). Similarly, for the
functions O2

2 �s� for a0 > 1 we have

O�2 �s� �
X1
j�1

E�j
s� 2aÿ 2j

, s 2 D�, E�j �
� ÿ 1� jÿ1aÿ2j�2aÿ10 G� j� 1ÿ a�

k0G� j� : �5:37�

If a0 < 1 then

Oÿ2 �s� � ÿ
X1
j�1

Eÿj
s� 2j

, s 2 Dÿ, Eÿj �
� ÿ 1� ja2jÿ10 G� j� 1ÿ a�

k0G� j� : �5:38�

The function Oÿ2 �s� for a0 > 1 and the function O�2 �s� for a0 < 1 are de®ned by analytical continuation
from relationship (5.32). The corresponding representations can also be written for the functions

ÿ K1�s�lÿsÿ1
Kÿ0 �s�

F�2 �s�, ÿ
gls�1

K�0 �s�
Fÿ2 �s�: �5:39�

Although these expressions contain the unknown functions F�2 �s�, Fÿ2 �s� nevertheless, the poles of
functions (5.39) in D� and Dÿ, respectively, are known. In contrast with (5.31) and (5.32), the
coe�cients of expansions (residues) in the presentations for functions (5.39) cannot be written down
explicitly. Let us introduce the following functions

Cÿ0 �s� �
X1
j�1

Aÿj
s� 2a� 2jÿ 2

, Cÿ1 �s� �
X1
j�1

Bj

s� 2jÿ 1
, �5:40�

C�0 �s� �
X1
j�1

A�j
s� 2aÿ 2j

, �5:41�

where

A�j � ÿ lim
s4ÿ2a�2j

�s� 2aÿ 2j�gls�1Fÿ2 �s�
K�0 �s�

, �5:42�
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Bj � ÿ lim
s41ÿ2j

�sÿ 1� 2j�K1�s�F�2 �s�
ls�1Kÿ0 �s�

, �5:43�

Aÿj � ÿ lim
s4ÿ2a�2ÿ2j

�s� 2aÿ 2� 2j�K1�s�F�2 �s�
ls�1Kÿ0 �s�

: �5:44�

Taking into account the class of solutions (5.9), according to the Muskhelishvili formulae (4.5) and (4.6)
and eqns (5.11) and (5.12) we establish the behaviour of the functions wjÿ�t�, wj��t� �j � 1, 2� as t4120

w1ÿ�t� � O
ÿ
fa0 ÿ tgÿa

�
, t4 a0 ÿ 0, w2ÿ�t� � O

��
b0 ÿ t

	ÿ1�a�
, t4 b0 ÿ 0, �5:45�

w1��t� � O

��
t0 ÿ b0

	ÿ1�a�
, t4 b0 � 0, w2��t� � O

ÿ
ftÿ a0gÿa

�
, t4 a0 � 0: �5:46�

Taking into account formulae (5.45) and (5.46) we use Abelian-type theorems (formulations of these
theorems are recorded in the Appendix) and arrive at the asymptotics of the unknown functions at in®nity

Fÿ1 �s� � O�saÿ1�, Fÿ2 �s� � O�sÿa �, s41, s 2 Dÿ, �5:47�

F�1 �s� � O�sÿa�, F�2 �s� � O�saÿ1 �, s41, s 2 D�: �5:48�

Now we may estimate the behaviour of the coe�cients A2
j , Bj as j41

A�j � O
ÿ
l2jj1ÿ2a

�
, Aÿj � O

ÿ
l2jjÿ2�2a

�
, Bj � O

ÿ
l2jj ÿ2�2a

�
, j41: �5:49�

Therefore, series (5.40) and (5.41) converge uniformly in the corresponding regions

Dÿ0 � Cn [ �s 2 C: js� 2a� 2jÿ 2j< e
	
,

Dÿ1 � Cn [ �s 2 C: js� 2jÿ 1j< e
	
,

D�0 � Cn [ �s 2 C: js� 2aÿ 2jj< e
	
, j � 1, 2, . . .

where C is a complex plane, e is a positive number as small as desired. Thus, the functions C�0 �s� is
analytic in D�0 and the functions Cÿ0 �s�, Cÿ1 �s� are analytic in Dÿ0 , D

ÿ
1 , respectively. We note that

D2
0 � D2, Dÿ1 � Dÿ.
Subtracting from the left- and right-hand-sides of eqn (5.29) the sum Cÿ0 �s� �Cÿ1 �s� and of eqn (5.30)

the function C�0 �s�, we remove the poles. Now we may apply the theorem on analytical continuation.
Taking into account the behaviour (5.47) and (5.48) at in®nity of the functions F2

j � j � 1, 2� as well as
the asymptotic equalities as s41 (see, e.g., Olver, 1974)

K�0 �s�0ÿ k0

�
ÿ s

2

�aÿ1
, s 2 D�, Kÿ0 �s�0

�
s

2

�1ÿa
, s 2 Dÿ �5:50�

according to Liouville's theorem (see the Appendix) we arrive at the solution of Wiener±Hopf matrix
problem (5.17)
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F�1 �s� � ÿ
S1��s�
K�0 �s�

� lÿsÿ1K1�s�S2��s�
Kÿ0 �s�

, F�2 �s� � K�0 �s�S2��s�, �5:51�

Fÿ1 �s� �
S2ÿ�s�
Kÿ0 �s�

� gls�1S1ÿ�s�
g�K

�
0 �s�

, Fÿ2 �s� �
1

g�
Kÿ0 �s�S1ÿ�s�, �5:52�

S12�s� � O2
1 �s� ÿCÿ0 �s� ÿCÿ1 �s�, S22�s� � Cÿ O2

2 �s� �C�0 �s�, �5:53�

with C being an arbitrary constant. For the functions F2
j �s� � j � 1, 2� to be analytic in the half-planes

D2 it is necessary and su�cient that conditions (5.42)±(5.44) be satis®ed. Substituting formulae (5.51)
and (5.52) into conditions (5.42)±(5.44) we obtain the in®nite linear algebraic system of equations with
respect to the coe�cients A�n , A

ÿ
n , Bn

Aÿn � l2nÿ3�2aD�0n

 
Cÿ O�2 �2ÿ 2aÿ 2n� ÿ

X1
m�1

A�m
2n� 2mÿ 2

!
, �5:54�

Bn � l2nÿ2D�1n

 
Cÿ O�2 �1ÿ 2n� ÿ

X1
m�1

A�m
2n� 2mÿ 2aÿ 1

!
, �5:55�

A�n � l2n�1ÿ2aDÿn

 
ÿ Oÿ1 �2nÿ 2a� �

X1
m�1

Aÿm
2n� 2mÿ 2

�
X1
m�1

Bm

2n� 2mÿ 2aÿ 1

!
,

n � 1, 2, . . . , �5:56�

where

D�0n � ÿ
2g�G

2�nÿ 1� a�
pgG2�n� , D�1n �

2k20G
2
ÿ
nÿ 1

2

�
pgG2

ÿ
nÿ a� 1

2

� , �5:57�

Dÿn � ÿ
2gG2�n� 1ÿ a�

pg�k20G�n�
: �5:58�

In order to separate the problems on de®nition of the coe�cients A2
n and Bn on the one hand and the

constant C on the other hand, we present the coe�cients A2
n , Bn as follows

A2
n � CA2

n0 � A2
n1, Bn � CBn0 � Bn1: �5:59�

The substitution of (5.59) into eqns (5.54)±(5.56) yields the system of equations with respect to the new
coe�cients A2

nj , A
ÿ
nj, Bnj

Aÿnj � l2nÿ3�2aD�0n

 
f ÿnj ÿ

X1
m�1

A�mj

2n� 2mÿ 2

!
, �5:60�
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Bnj � l2nÿ2D�1n

 
fnj ÿ

X1
m�1

A�mj

2n� 2mÿ 2aÿ 1

!
, �5:61�

A�nj � l2n�1ÿ2aDÿn

 
f�nj �

X1
m�1

Aÿmj

2n� 2mÿ 2
�
X1
m�1

Bmj

2n� 2mÿ 2aÿ 1

!
,

n � 1, 2, . . . ; j � 0, 1, �5:62�

f ÿn0 � 1, fn0 � 1; f �n0 � 0, �5:63�

f ÿn1 � ÿO�2 �2ÿ 2aÿ 2n�, fn1 � ÿO�2 �1ÿ 2n�, f �n1 � ÿOÿ1 �2nÿ 2a�: �5:64�
This system is a normal-type in®nite system (of the Poincare±Koch-type) and does not involve the
unknown constant C. Due to the particular structure of system (5.60)±(5.62), there are two e�ective
ways for its solution. The ®rst one is the reduction method (see Kantorovich and Krylov, 1964)

Aÿ�N�nj � l2nÿ3�2aD�0n

 
f ÿnj ÿ

XN
m�1

A��N�mj

2n� 2mÿ 2

!
, �5:65�

B
�N�
nj � l2nÿ2D�1n

 
fnj ÿ

XN
m�1

A��N�mj

2n� 2mÿ 2aÿ 1

!
, �5:66�

A��N�nj � l2n�1ÿ2aDÿn

24f �nj �XN
m�1

 
Aÿ�N�mj

2n� 2mÿ 2
� B

�N�
mj

2n� 2mÿ 2aÿ 1

!35,
n � 1, 2, . . . , N; j � 0, 1: �5:67�

The exponential convergence of an approximate solution to the exact one is assured by the exponential
decay of the non-diagonal elements of the matrix of system (5.65)±(5.67). In a number of cases it is
convenient to convert system (5.60)±(5.62) through recurrence relations. We represent the coe�cients
A2

nj , Bnj as expansions in the parameter l

Aÿnj � l2nÿ3�2a
X1
k�1

aÿnkjl
2kÿ2, Bnj � l2nÿ2

X1
k�1

bnkjl
2kÿ2, �5:68�

A�nj � l2n
X1
k�1

a�nkjl
2kÿ2: �5:69�

Substituting the last relationships into system (5.60)±(5.62) we get the simple recurrence relations

aÿn1j � D�0n f
ÿ
nj, bn1j � D�1n fnj, �5:70�
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a�nkj � Dÿn

24l1ÿ2af �njdk1 �Xk
p�1

�
aÿp,k�1ÿp, j

2n� 2pÿ 2
� bp,k�1ÿp, j

2n� 2pÿ 1ÿ 2a

�35, k � 1, 2, . . . , �5:71�

aÿnkj � ÿD�0n
Xkÿ1
p�1

a�p,kÿp, j
2n� 2pÿ 2

, bnkj � ÿD�1n
Xkÿ1
p�1

a�p,kÿp, j
2n� 2pÿ 1ÿ 2a

, k � 2, 3, . . . , �5:72�

where dk1 is Kronecker's symbol. Formulae (5.68)±(5.72) yield full, rapidly converging asymptotic
expansions on l for the coe�cients A2

n and Bn. The sequence of the calculations of the elements of
series (5.68) and (5.69) can be presented as follows�

aÿn1j, bn1j
	�)na�n1j, aÿn2j, bn2jo�)na�n2j, aÿn3j, bn3jo�)� � � , n � 1, 2 . . . ; j � 1, 2: �5:73�

Now de®ne the constant C. From additional condition (5.10), as a consequence of (5.14) we deduce

Fÿ1 �0� � ÿ
p
2a0

, �5:74�

On the other hand, taking the limit as s4 0 we obtain from (5.52)

ÿOÿ2 �0� � C�C�0 �0� � ÿ
p
2a0

Kÿ0 �0�: �5:75�

Taking into account (5.59) we have

C � 1

1� s0

�
Oÿ2 �0� ÿ s1 ÿ p

2a0G�a�
�
, sj �

X1
m�1

A�mj

2aÿ 2m
: �5:76�

The de®nition of the constant C completes the solution of the 2� 2 matrix Wiener±Hopf problem.
Applying inverse Mellin transforms to formulae (5.51) and (5.52) we obtain the solution of the system
of integral eqns (5.5) and (5.6)

w1�t� �
1

2pi

�
G
Fÿ1 �s�

�
t

a0

�ÿsÿ1
ds, 0 < t < a0, �5:77�

w2�t� �
1

2pi

�
G
Fÿ2 �s�

�
t

b0

�ÿsÿ1
ds, 0 < t < b0: �5:78�

These integrals will be calculated in the next section.
In conclusion, we give a summary of the main steps of the algorithm of the solution of system (5.5)

and (5.6) that can be applied to a system of the Mellin convolution-type equations on di�erent segments
�0, a0�, �0, b0�

a11w1�t� � a12w2�t� �
�a0
0

l11

�
t

t

�
w1�t�

dt
t
�
�b0
0

l12

�
t

t

�
w2�t�

dt
t
� f1�t�, 0 < t < a0, �5:79�

a22w1�t� � a22w2�t� �
�a0
0

l21

�
t

t

�
w1�t�

dt
t
�
�b0
0

l22

�
t

t

�
w2�t�

dt
t
� f2�t�, 0 < t < b0: �5:80�
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We suppose that the Mellin transforms of the functions lkm are meromorphic and without loss of
generality that l � b0a

ÿ1
0 < 1.

1. Extrapolation (5.11) and (5.12) of system (5.5) and (5.6) over the positive half-axis and calculation of
the Mellin transforms of the kernels of system (5.11) and (5.12).

2. Transformation of the ®rst equation in system (5.17) to form (5.23), in order to remove the product
of the unknown function Fÿ1 �s� that is analytical in Dÿ and the term lÿsÿ1 that has an essential
singularity at in®nity in Dÿ.

3. Factorization (5.27) of the function K0�s�, the function that is in the lower left-hand-side corner of the
matrix G, either in an explicit form as (5.28) or in terms of Cauchy integrals (see Gakhov, 1966).
Reduction of the system to form (5.29) and (5.30).

4. In the case of the non-homogeneous system (5.79) and (5.80) � fj�t� 6� 0� replacement of the known
summands in (5.29) and (5.30) by the di�erence of the boundary values of two functions (5.31) and
(5.32) which are analytic in D� and Dÿ, respectively (using the Sokhotski±Plemelj formulae, for
example).

5. Speci®cation of the poles of functions (5.39), introduction of functions (5.40)±(5.41) and delimination
of the poles via the subtraction of these functions from both sides of system (5.29) and (5.30).

6. Application of Abelian-type theorems and Liouville's theorem and de®nition of solution (5.51) and
(5.52) that contains unknown coe�cients [residues (5.42)±(5.44)].

7. Solution of the in®nite algebraic system (5.60)±(5.62) either by the reduction method (5.65)±(5.67) or
in terms of the recurrence relations (5.68)±(5.72). Due to the presence in matrix (5.18) of the terms
lÿsÿ1 and ls�1 (l should not be equal to 1), the convergence of both methods is exponential.

8. Inversion of the Mellin transforms and de®nition of the solution of the system of integral equations.

6. Physical quantities

6.1. De®nition of the length of the slipping zone

In order to solve the contact problem completely, we must ®nd the position of the point b, the point
of transition from slippage to bonding. Let us introduce the stress intensity factor

Nb � lim
x4bÿ0

�bÿ x�1ÿa�txy � msy��x, 0� �6:1�

and require that Nb � 0, i.e. that txy � msy � 0, x � b, y � 0. Then the contact stresses txy and sy will
remain bounded in the vicinity of the point b. Note that the condition Nb � 0 is equivalent to the Galin
condition (see Galin, 1945) as well as to the results of Spence (1973) and to the proof of Dundurs and
Comninou (1979) of boundedness of the stresses at the point of transition from Coulomb friction zone
to adhesion.

Since the function w2�t� belongs to the class (5.9) we may write

w2�t�0N�b0 ÿ t�aÿ1, t4 b0 ÿ 0, �6:2�
where N is a constant. Taking into account formula (5.8) we immediately get

t1�x�0 PN

2c cos2
bb
2

�
tan

bb
2
ÿ tan

bx
2

�aÿ1
0 PN

2c cos2a
bb
2

�
b
2
�bÿ x�

�aÿ1
, x4 bÿ 0: �6:3�
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Using Theorem 28 (Appendix) and the second formula in (5.14) we arrive at the asymptotic equality

Fÿ2 �s�0
G�a�
sa

Nbaÿ10 , s41, s 2 Dÿ: �6:4�

On the other hand, due to (5.52) and (5.50), the behaviour of the function Fÿ2 �s� at in®nity can be
written as follows

Fÿ2 �s�0
1

g�21ÿasa

 
o0 ÿ

X1
m�1

Aÿm ÿ
X1
m�1

Bm

!
, s41, s 2 Dÿ, �6:5�

where the constant o0 de®nes the behaviour of the known function O�1 �s� at in®nity

O�1 �s�0
o0

s
, s41, s 2 D�, �6:6�

o0 �

8>>>>><>>>>>:

X1
m�1

C�m, b0 > 1

ÿ
X1
m�1

ÿ
Cÿm �Dÿm

�
, b0 < 1

: �6:7�

Therefore, the stress intensity factor Nb is de®ned by

Nb � P�b0=b�1ÿa

2c cos2a
bb
2
g�G�a�

"
o0 ÿ

X1
m�1

ÿ
Aÿm � Bm

�#
: �6:8�

Fig. 2. Stress intensity factor Np=P vs b�Ð, c=a � 5; - - -, c=a � 10; � - � , c=a � 1000�.
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We assume in all subsequent numerical examples that n � 0:3. The graphs of the stress intensity factor
Pÿ1Nb as a function of b for some values of c and m � 0:3 are shown in Fig. 2.

In order to have the tangential and normal contact stresses continuous at the point x � b, it is
necessary and su�cient that Nb � 0 or, that it is the same asX1

m�1

ÿ
Aÿm � Bm

� � o0: �6:9�

The last equality is a transcendential equation for l that is equivalent to Nb � 0. This equation may
have a denumerable set of roots with an accumulation point at 1. According to the results of Spence
(1973) only the ®rst root gives the solution of the physical problem. We will note this root as l. Due to
l � b0a

ÿ1
0 and formula (5.1), the quantity b that de®nes the length of the zone of slip is de®ned by the

relationship

b � 2c

p
tanÿ1

�
l tan

pa
2c

�
: �6:10�

The normalised length of the adhesion zone 2b=a depends only on Poisson's ratio n, the coe�cient of
friction m and the parameter �cÿ a�=a, where a is the length of the punches and 2�cÿ a� is the distance
between the stamps. The dependence of the normalised half-length L � b=a of the adhesion zone on the
normalised distance �cÿ a�=a between stamps for the cases m � 0:1, 0:2 and 0.3, is graphically presented
in Fig. 3. As it can be seen from the graphs, the adhesion zones increase as the stamps approach each
other. On the other hand, if c41 then L4 L�, where L� is the corresponding parameter for the
problem for a single stamp. For example, for m � 0:3 and �cÿ a�=a � 5, 10 and 1000 we have the
following values of L:

0:8272, 0:7731, 0:6901,

Fig. 3. Dependence of the half-length b=a of the adhesion zone on �cÿ a�=a (Ð, m � 0:1; - - -, m � 0:2; � - �, m � 0:3).
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respectively. In the case c � 1 for m � 0:3 the value of the length of the adhesion zone is known: L� �
0:695 (Galin, 1945). Thus, the length of the adhesion zone does not coincide with the corresponding
value which produces the homogeneous system for the problem on a stamp with a horizontal base. That
is similar to the problem on a stamp with non-plane pro®le pressed onto a half-plane under conditions
of friction and adhesion (Antipov and Arutyunyan, 1992): a right part of the basic system of integral
eqns (5.5) and (5.6) in¯uences on the sliding zone length.

The dependence of the length of the adhesion zone on the friction coe�cient m for the cases c � 5, 10
and 1000 is shown in Fig. 4. As we can observe in this ®gure, the curvature of the graphs increases with
a decrease of this distance c.

6.2. Stress intensity factor at the edge point

If b is selected as (6.10) then it follows from (5.51) and (5.52) that the solution of the system of the
functional equations has asymptotics

F�1 �s� � O�sÿaÿ1�, F�2 �s� � O�saÿ1�, s41, s 2 D�, �6:11�

Fÿ1 �s� � O�saÿ1�, Fÿ2 �s� � O�sÿaÿ1 �, s41, s 2 Dÿ: �6:12�

Applying Theorems 28 and 38 (Appendix) we ®nd the asymptotics of the contact stresses and the
tangential derivatives of the displacements in the neighbourhood of the singular points

txy�x, 0� � O
��aÿ x�ÿa	, sy�x, 0� � O

��aÿ x�ÿa	, x4 aÿ 0, �6:13�

�txy � msy��x, 0� � O
��bÿ x�a

	
, x4 bÿ 0, �6:14�

Fig. 4. Dependence of the half-length b=a of the adhesion zone on the friction coe�cient m (Ð, c=a � 5; - - -, c=a � 10; � - �,
c=a � 1000).
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@u

@x
�x, 0� � O

��xÿ b�a
	
, x4 b� 0,

@v

@x
�x, 0� � O

��xÿ a�ÿa	, x4 a� 0: �6:15�

At the point x � b the contact stresses are continuous and their ®rst derivatives have a power
singularity. The normal stress intensity factor at the edge point

Ka � lim
x4aÿ0

�aÿ x�asy�x, 0� �6:16�

is computed similarly to (6.1). Since the function w1�t� behaves at the end point as

w1�t�0M�a0 ÿ t�ÿa, t4 a0 ÿ 0, M � const, �6:17�
for the normal stress s�x� we can write that

s�x�0 PM

2c cos2ÿ2a
ba
2

�
b
2
�aÿ x�

�ÿa
, x4 aÿ 0: �6:18�

If we take into account the asymptotics of the function Fÿ1 �s�

Fÿ1 �s�0
G�1ÿ a�
s1ÿa

Maÿa0 , s41, s 2 Dÿ, �6:19�

Fÿ1 �s�0C

�
s

2

�aÿ1
, s41, s 2 Dÿ, �6:20�

that follows from Theorem 28 (Appendix) and (5.52), respectively, then ®nd the constant M

Fig. 5. Stress intensity factor Ka=P vs �cÿ a�=a (a � 1; Ð, m � 0:1; - - -, m � 0:2; � - �, m � 0:3).
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M � 21ÿaaa0C
G�1ÿ a� �6:21�

and therefore, from (6.16) and (6.18) we get

Ka � PCaa0
cbaG�1ÿ a� cos2aÿ2

ba
2
: �6:22�

For the tangential stress intensity factor in view of Coulomb's law of dry friction, we obtain

La � lim
x4aÿ0

�aÿ x�atxy�x, 0� � ÿmKa: �6:23�

In Figs. 5 and 6 the values of the stress intensity factor Ka are presented for di�erent values of the
friction coe�cient and the parameter c. As it can be seen from Fig. 5, the factor jKaj increases when the
stamps approach each other. In other words, the presence of other stamps increases the stress intensity
factors of both contact stresses.

6.3. Contact stresses

The contact stresses s�x�, t�x� are connected with the function w1�t�, w2�x� by formula (5.2) and (3.22).
Let us ®nd the function w1�t�. According to formulae (5.77) and (5.52) we have

w1�t� � I1�t� � g
g�
I2�t�, �6:24�

I1�t� � 1

2pi

�
G

C�C�0 �s� ÿ Oÿ2 �s�
Kÿ0 �s�

�
t

a0

�ÿsÿ1
ds, �6:25�

Fig. 6. Stress intensity factor Ka=P vs m (a � 1; Ð, c � 5; - - -, c � 10; � - �, c � 1000).
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I2�t� � 1

2pi

�
G

Oÿ1 �s� ÿCÿ0 �s� ÿCÿ1 �s�
K�0 �s�

�
t

b0

�ÿsÿ1
ds: �6:26�

Taking into account formulae (5.32) and (5.27) we get

I1�t� � I
�1�
1 �t� � I

�2�
1 �t�, �6:27�

I
�1�
1 �t� � ÿ

1

4k0i

�
G

tÿsÿ1 ds

sin p
�
s

2
� a

� , �6:28�

I
�2�
1 �t� �

1

2pi

�
G

K�0 �s� �
�
C�C�0 �s� ÿ O�2 �s�

�
K0�s�

�
t

a0

�ÿsÿ1
ds: �6:29�

The ®rst integral I
�1�
1 �t� can be calculated by direct application of Cauchy's theorem

I
�1�
1 �t� � ÿ

t2aÿ1

k0�1� t2� : �6:30�

The integrand in formula (6.29) has poles in D� at the points s � ÿ2aÿ 2m� 2 �m � 1, 2, . . .�. Using
the theory of residues we have

I
�2�
1 �t� �

2

pk0

X1
m�1

G0m

"
Cÿ O�2 �2ÿ 2aÿ 2m� �

X1
j�1

A�j
ÿ2mÿ 2j� 2

#�
t

a0

�2a�2mÿ3
, �6:31�

where

G0m � G�mÿ 1� a�
G�m� : �6:32�

According to formula (5.54) and to (6.30) we transform expression (6.27) to the form

I1�t� � ÿ 1

k0

"
t2aÿ1

1� t2
� g

g�

X1
m�1

Aÿm
G0m

�
t

b0

�2a�2mÿ3#
: �6:33�

In order to calculate the integral I2�t�, we consider two cases: 0 < t < b0 and b0 < t < a0. On using
(5.31), in the ®rst case we have

I2�t� � ÿpmg�
2k0

I
�1�
2 �t� � I

�2�
2 �t�, �6:34�

where

I
�1�
2 �t� �

1

2pi

�
G

tan
ps
2
tÿsÿ1 ds

sin p
�
s

2
� a

� , �6:35�
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I
�2�
2 �t� �

1

2pi

�
G

1

K�0 �s�
�

t

b0

�ÿsÿ1"
O�1 �s� ÿ

X1
j�1

Aÿj
s� 2a� 2jÿ 2

ÿ
X1
j�1

Bj

s� 2jÿ 1

#
ds,

0 < t < b0:

�6:36�

By a similar way

I
�1�
2 �t� �

2
ÿ
k0 ÿ t2aÿ1

�
pmg�1� t2� , �6:37�

I
�2�
2 �t� � ÿ

X1
j�1

"
Aÿj

�t=b0�2a�2jÿ3
K�0 � ÿ 2aÿ 2j� 2� � Bj

�t=b0�2jÿ2
K�0 � ÿ 2j� 1�

#
: �6:38�

Thus,

I2�t� � ÿ g�
g�1� t2�

�
1ÿ t2aÿ1

k0

�
� 1

k0

X1
j�1

"
Aÿj
G0j

�
t

b0

�2a�2jÿ3
� Bj

G1j

�
t

b0

�2jÿ2#
, �6:39�

0 < t < b0, G1j �
G
ÿ
jÿ 1

2

�
G
ÿ
jÿ a� 1

2

� : �6:40�

In the case t > b0 we have

I2�t� � 2

pk20

X1
m�1

Gm

"
Oÿ1 �2mÿ 2a� ÿ

X1
j�1

Aÿj
2m� 2jÿ 2

ÿ
X1
j�1

Bj

2m� 2jÿ 2aÿ 1

#�
t

b0

�2aÿ2mÿ1
, �6:41�

Gm � G�m� 1ÿ a�
G�m� : �6:42�

The expression in the square brackets in (6.41) can be simpli®ed with the help of (5.56) and then

I2�t� � g�
g

X1
m�1

A�m
Gm

�
t

a0

�2aÿ2mÿ1
, b0 < t < a0: �6:43�

Substituting (6.33), (6.39) and (6.43) into (6.24) we arrive at the formulae

w1�t� � ÿ
1

1� t2
� g

k0g�

X1
m�1

Bm

G1m

�
t

b0

�2mÿ2
, 0 < t < b0, �6:44�

w1�t� � ÿ
t2aÿ1

k0�1� t2 � � R1�t� ÿ R2�t�, b0 < t < a0, �6:45�

R1�t� �
X1
m�1

A�m
Gm

�
t

a0

�2aÿ2mÿ1
, R2�t� � g

k0g�

X1
m�1

Aÿm
G0m

�
t

b0

�2a�2mÿ3
: �6:46�
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The contact stress s�x� is given by

s�x� � P

2c cos2
bx
2

w1

�
tan

bx

2

�
, 0 < x < a: �6:47�

To calculate the tangential stresses we use formulae

t�x� � t1�x� ÿ ms�x�, 0 < x < b, t�x� � ÿms�x�, b < x < a: �6:48�

Therefore, we have already found the function t�x� on the sliding zone. Let us consider the segment
0 < x < b. From (5.2) and (6.48) we have

t�x� � P

2c cos2
bx
2

�
w2

�
tan

bx
2

�
ÿ mw1

�
tan

bx
2

��
, 0 < x < b: �6:49�

We substitute formulae (5.52) and (5.53) into (5.78) and ®nd

w2�t� �
1

2pig�

�
G
Kÿ0 �s�

�
Oÿ1 �s� ÿCÿ0 �s� ÿCÿ1 �s�

�� t

b0

�ÿsÿ1
ds: �6:50�

As in the case of the function w1�t�, we continue analytically the function Oÿ1 �s� in the half-plane D� and
from (5.31) we get

w2�t� � ÿ
m
4i

�
G

tÿsÿ1 ds

cos
ps
2

� 1

2pig�

�
G

cot
ps
2
� cot pa

K�0 �s�

�
"
O�1 �s� ÿ

X1
j�1

Aÿj
s� 2a� 2jÿ 2

ÿ
X1
j�1

Bj

s� 2jÿ 1

#�
t

b0

�ÿsÿ1
ds:

�6:51�

Application of the theory of residues yields us

w2�t� � ÿ
m

1� t2
ÿ 2

pk0g�

X1
m�1

Gm

�
t

b0

�2mÿ1
O�1 � ÿ 2m� � mg

g�k0

X1
m�1

Bm

G1m

�
t

b0

�2mÿ2

� 2

pg�k0

X1
m�1

Gm

X1
j�1

�
Aÿj

2a� 2jÿ 2mÿ 2
� Bj

2jÿ 2mÿ 1

��
t

b0

�2mÿ1
,

�6:52�

where

O�1 � ÿ 2m� � ÿmg�
2

X1
j�1

� ÿ 1� jbÿ2j0 G2j

m� jÿ 1
2

, b0 > 1, �6:53�

O�1 � ÿ 2m� � g�
2g

X1
j�1
� ÿ 1� jb2jÿ20

"
k0G1j

mÿ j� 1
2

ÿ b2aÿ10 G0j

2�mÿ jÿ a� 1�

#
, b0 < 1, �6:54�
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G2j �
G
ÿ
a� jÿ 1

2

�
G
ÿ
j� 1

2

� : �6:55�

Now, using formulae (5.44) and (6.52) we arrive at the expression for the function w2�t� ÿ mw1�t�

w2�t� ÿ mw�t� � ÿ 2

pk0g�

X1
m�1

GmO
�
1
� ÿ 2m�

�
t

b0

�2mÿ1

� 1

pk0g�

X1
m�1

Gm

�
t

b0

�2mÿ1X1
j�1

 
Aÿj

a� jÿmÿ 1
� Bj

jÿmÿ 1
2

!
, 0 < t < b0:

�6:56�

The stresses t�s� in the adhesion area are speci®ed by

t�x� � P

2c cos2
bx
2

�
w2

�
tan

bx
2

�
ÿ mw1

�
tan

bx
2

��
, 0 < x < b: �6:57�

6.4. Behaviour of the contact stresses in the neighbourhood of the point b

Taking into account asymptotics (5.49) of the coe�cients A2
m , Bm we notice that as t4 b0 � 0 the

series R1�t� converges slowly. In order to study the behaviour of the function s�x� in the right vicinity of
the point t=b, we use (5.56) and express the coe�cients A�m in (6.46) via the coe�cients Aÿj , Bj. Then we
change the order of summation and get

R1�t� � t2aÿ1

k0�t2 � 1� ÿ
gG�2ÿ a�
pg�k20

�
t

b0

�2aÿ3
�6:58�

�
X1
j�1

"
Aÿj F1j�t�

j
� BjF2j�t�

jÿ a� 1
2

ÿ C �j F3j�t�
3
2 ÿ jÿ a

G2jF3j�t�
#
, b0 > 1, �6:59�

R1�t� � ÿgG
�2ÿ a�
pg�k20

�
t

b0

�2aÿ3X1
j�1

"ÿ
Aÿj �Dÿj

�F1j�t�
j
� ÿBj � C ÿj

� F2j�t�
jÿ a� 1

2

#
, b0 < 1,

where

F1j�t� � F

�
2ÿ a, j; j� 1;

b20
t2

�
, �6:60�

F2j�t� � F

�
2ÿ a, jÿ a� 1

2
; jÿ a� 3

2
;
b20
t2

�
, �6:61�

F3j�t� � F

�
2ÿ a,

3

2
ÿ jÿ a;

5

2
ÿ jÿ a;

b20
t2

�
, �6:62�

F�a, b; c; x� is a Gaussian hypergeometric function. We introduce the function
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F�n; t� � F

�
2ÿ b, n; n� 1;

b20
t2

�
�6:63�

and express the functions Fkj�t� in terms of this function

F1j�t� � F�j; t�, F2j�t� � F
ÿ
jÿ a� 1

2 ; t
�
, F3j�t� � F

ÿÿ jÿ a� 3
2 ; t
�
: �6:64�

The function F�n; t� admits the following presentation in the right neighbourhood of the point t � b0
[see formula 9.131(2), Gradshtein and Ryzhik, 1965]

F�n; t� � G�n� 1�G�aÿ 1�
G�n� aÿ 1�

�
t

bo

�2n

� n
1ÿ a

�
1ÿ b20

t2

�aÿ1
�nG�aÿ 1�F��t�, �6:65�

where

F��n; t� � ÿ 1

G�a�
X1
j�1

�vÿ 1� a�j
�a�j

�
1ÿ b20

t2

�j�aÿ1
: �6:66�

At the ®rst sight, the function R1�t� has a power singularity as t4 b0 � 0. But if we take into account
that for the root of eqn (6.9)

X1
j�1

�
Aÿj � Bj ÿ C �j

�
� 0, b0 > 1 �6:67�

and

X1
j�1

ÿ
Aÿj � Bj � C ÿj �Dÿj

� � 0, b0 < 1, �6:68�

we get for b0 < t < a

R1�t� � 1

1� t2

�
t2aÿ1

k0
ÿ 1

�
� g

k0g�

�
t

b0

�2aÿ3X1
j�1

(
Aÿj

"
1

G0j

�
t

b0

�2j
�F�� j; t�

#

� Bj

"
1

G1j

�
t

b0

�2jÿ2a�1
� F�

�
jÿ a� 1

2
; t

�#
�Wj�t�

)
, �6:69�

where

Wj�t� � ÿC �j F�
ÿ
3
2 ÿ jÿ a; t

�
, b0 > 1, �6:70�

Wj�t� � Dÿj F��j; t� � C ÿj F�
ÿ
j� 1

2 ÿ a; t
�
, b0 < 1: �6:71�

Thus, we arrive at boundedness of the function w1�t� at the point b0. Hence, the contact stresses s�x� are
bounded at the point b. For the sake of completeness we have to prove that the stresses s�x� are
continuous at the point of transition from slippage to bonding. Since F��n; b0� � 0 the limit expression
R1�b0 � 0� can be written as follows
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R1�b0 � 0� � b2aÿ10

k0
ÿ
b20 � 1

� ÿ 1

b20 � 1
� g

g�k0

X1
j�1

 
Aÿj
G0j
� Bj

G1j

!
�6:72�

in both cases b0 > 1 and b0 < 1. Substituting this formula into (6.45) and comparing it with (6.44) we get

Fig. 7. Distribution of the contact stresses along the contact zone (0 < x < a) for the following parameters: a= 1, m � 0:2
(Ð, ÿ Pÿ1sy (x, 0), c � 5; � - �, ÿPÿ1sy�x, 0�, c � 1000; - - -, Pÿ1txy�x, 0�, c � 5; � � � , Pÿ1txy�x, 0�, c � 1000).

Fig. 8. The contact stresses in the neighbourhood of the point b �a � 1, m � 0:2�.
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w1�b0 � 0� � w1�b0 ÿ 0� � ÿ 1

1� b20
� g

k0g�

X1
m�1

Bm

G1m
, �6:73�

Bm

G1m
� O

ÿ
maÿ1l2m

�
, m41 �0 < l < 1�: �6:74�

In a similar manner, it may be shown, that the tangential stresses are continuous at the point b. The
derivatives with respect to x of the stresses sy�x, 0� and txy�x, 0� have a power singularity at the point b.
In Fig. 7 the graphs of the normal and tangential stresses for the cases c = 5 and c = 1000 when

m � 0:2 are shown. These plots are in good agreement with the corresponding curves of Spence (1973):
the graphs of stresses have a salient point under transition from bonding to slippage. It should be noted
that the analytical formulae (6.44)±(6.46), (6.69) and (6.73) allow us to calculate the values of stresses
with high exactness at the salient point b. The scaled graphs of the contact stresses ÿPÿ1s�x� and
Pÿ1t�x� in the neighbourhood of the point b for the same parameters as in Fig. 7, are presented in
Fig. 8.

7. Conclusion

We have solved analytically the contact problem for a periodic system of stamps with friction and
adhesion. The problem was reduced to a system of two singular integral equations with Hilbert's kernels
and then to a 2 � 2 matrix Wiener±Hopf problem that was solved e�ciently. It was shown that this
technique admits generalization for a system of two Mellin convolution-type equations on di�erent
segments if Mellin transforms of the kernels are meromorphic functions. Dependence of the sliding zone
length on the distance between stamps and the friction coe�cient was studied. The length of the
adhesion area and the stress intensity factor at the edge point increase when the stamps approach each
other. It has been shown that the contact stresses are bounded and continuous at the point of transition
from slippage to bonding.

Acknowledgements

The work was supported by the Alexander von Humboldt Foundation (Germany) and the U.K.
Engineering and Physical Sciences Research Council (EPSRC), Grant No. GR/K76634. The author is
grateful to W. L. Wendland for making it possible to carry out the research project at the University of
Stuttgart. Thanks are also due to A. B. Movchan and O. Y. Zharii for useful discussions and both
referees for their valuable comments.

Appendix: the basic theorems

Theorem 18 (the Mellin convolution theorem, Titchmarsh, 1948). Let xkf �x� 2 L�0,1� and xkg�x� 2
L�0,1� and let

h�x� �
�1
0

f�y�g
�
x

y

�
dy

y
, �A:1�

then xkh�x� 2 L�0,1� and its Mellin transform H(s ) is equal to F(s)G(s) with R�s� � k� 1 where
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kH�s�, G�s�, F�s�k �
�1
0

kh�y�, g�y�, f�y�kxsÿ1 dx: �A:2�

Theorem 28 (the ®rst Abelian theorem, Doutsch, 1950). Let

f�x�0A�1ÿ x�aÿ1, x4 1ÿ 0, �A:3�
where A = const, R�a� > 0 and the integral

F ÿ�s� �
�1
0

f�x�xs dx �A:4�

is an absolutely convergent function in the half-plane R�s� > k. Then the behaviour of the function
F ÿ�s� at in®nity in this half-plane is de®ned by

F ÿ�s�0AG�a�
sa

, s41, jarg�s�jEf0<
p
2
: �A:5�

Theorem 38 (the second Abelian theorem, Doutsch, 1950). Let

f�x�0A�xÿ 1�aÿ1, x4 1� 0, �A:6�
where A = const, R�a� > 0 and the integral

F ��s� �
�1
1

f�x�xs dx �A:7�

is an absolutely convergent function in the half-space R�s� < k. Then the behaviour of the function
F ��s� at in®nity in this half-plane is de®ned by

F ��s�0AG�a�
� ÿ s�a , s41, jarg� ÿ s�jEf0 <

p
2
: �A:8�

Theorem 48 (Liouville's theorem, Gakhov, 1966). Let the function F(s ) be analytic in the entire plane
of the complex variable, except at in®nity, where it has a pole and suppose that the principal part of the
expansion of the function F(s ) at in®nity has the form

C0 � C1s� Cs2 � � � � � Cks
k:

Then the function F(s ) is the polynomial of degree k: F�s� � C0 � C1s� � � � � Cks
k everywhere in the

plane. In particular, if the function F(s ) is a constant at in®nity then it is that constant in the entire
plane.
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