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Abstract

A periodic system of plane stamps is pressed onto an elastic half-plane by a central vertical force P applied to
each stamp. The contact area for each stamp is divided into an inner adhesive region and two outer slipping
regions, where Coulomb’s law of dry friction applies. The system of singular integral equations on two different
segments, which corresponds to the problem, is equivalent to a Wiener—Hopf equation for a two-components
vector, for which an analytical constructive solution is obtained. Effective formulae for numerical computations for
the contact stresses are presented. The effect of friction and of the distance between the stamps on the length of
sliding zones is investigated. © 2000 Elsevier Science Ltd. All rights reserved.

Nomenclature

X,y two-dimensional Cartesian coordinates
u, v displacements

Oy Ty stresses

a(x), 1(x) contact stresses

P applied force

E Young’s modulus

1% Poisson’s ratio

a half-length of a stamp

2(c—a) distance between stamps

b half-length of the adhesion zone
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1. Introduction

coefficient of friction
Airy stress function
Muskhelishvili’s constant
parameters

Hilbert’s kernels
auxiliary function
classes of solution
constants
parameters

Holder function
analytic functions
parameters

solution of the system of integral equations with Cauchy kernels

auxiliary (‘ones-sides’) functions

solution of the Wiener—Hopf problem
contour of the Wiener—Hopf problem
matrix coefficient of the Wiener—Hopf problem
elements of the matrix G(s)

known vector and function

parameters

Gamma function

factors in the splitting of the function Ky(s)
half-planes

analytic functions in D, D~

known coefficients

auxiliary functions

unknown residues

arbitrary constant

coefficients

solution of the infinite linear algebraic system
coefficients

coefficients of the expansion on 4 of A;—;, B,
stress intensity factors

auxiliary functions

coefficients

integrals

Gaussian hypergeometric function

series

The fact that the stresses oy, 7., change their sign in the vicinity of the point of the boundary between
the conditions of adhesion (#=v =0) and a free boundary (¢, = 7,,) was defined first by Abramov
(1937). The investigations of Galin (1945) and Fal’kovich (1945) were among the first publications,
where the mixed boundary conditions in the contact region were analysed. Fal’kovich proposed to
divide the contact zone into three sections in order to prevent the stresses from oscillating. The central
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one is the adhesion zone and the two outer edge ones are the slipping zones without friction. Fal’kovich
reduced this problem to an integrable case of a Fuch’s differential equation and obtained exact formulae
for the contact stresses. It was found that the characteristic equation which determines the length of the
slide zone has a denumerable set of roots. Fal’kovich rejected the first root leading to Sadowsky’s
solution (Sadowsky, 1928)

P
0y =~ Tw =0 (-1

and found a different solution defined by the second root of the characteristic equation. In this case the
tangential stresses have variable signs only at zero and the length of the slipping zones is approximately
equal to 0.003a. Fal’kovich’s solution varies monotonically in the neighbourhood of the ends, but the
normal stresses have variable signs in the adhesion region. This means that neglecting friction in the
sliding zone in the appropriate contact problems is not correct.

Galin’s solution (Galin, 1945) does not have this deficiency. The contact area is divided into an
intermediate zone of adhesion and two zones of slippage where dry friction applies: |ty,| = ulo,|. Galin
constructed the solution by the approximate method based on conformal mapping of a region closed to
the given one to the upper half-plane and the reduction to two Hilbert problems. Galin’s solution
becomes Sadowsky’s solution (1.1) but not Fal’kovich’s solution as the coefficient of friction u tends to
Zero.

Another situation is the problem of an interface crack (Antipov, 1995): the boundary conditions do
not degenerate as u— 0 and the corresponding solution becomes Comninou’s solution (Comninou,
1977) but not the solution on a sliding crack. This essential difference occurs because in the punch
problem, the length of the slipping zone is determined from the boundedness of the solution at the point
of transition from slippage to bonding, while the length of the corresponding zone in the problem on an
interface crack is found from the boundedness when passing from slippage to separation.

Spence (1973) proved that there is a denumerable set of solutions when the stresses are restricted at
the point of transition from bonding to slippage. Nevertheless, only the greatest sliding zone out of the
possible ones leads to the solution that satisfies all additional conditions of the problem. With the help
of piecewise constant interpolation of the contact stresses, Spence obtained a numerical solution of the
system of Volterra’s equation, to which the problem is equivalent.

Antipov and Arutyunyan (1991, 1992) constructed an analytical solution of Galin’s problem in the
symmetric and non-symmetric case for a half-plane and a wedge, for a stamp with straight horizontal
and wedge-shaped base. In the present paper an analytical solution of Galin’s problem for a periodic
system of stamps is presented.

2. Formulation of the problem

Let us consider a periodic system of stamps
C=(—a,a)U(£2cFa, +2cta)U(+4cFa, t4cta)U... 2.1)

pressed down onto an elastic half-plane (]x| < 0o, — 0o <y < 0) with Young’s modulus E and Poisson’s
ration v under the action of vertical force P applied to the centre of each stamp (Fig. 1). The contact
area S is divided into zones of adhesion

A=(—=0b,b)U(£2¢Fb, £2¢+b)U(£4cFb, £4ctb)U--. (2.2)
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Fig. 1. Geometry of the problem: a half-plane with the periodic system of stamps.

and zones of slippage C\A where the conditions of dry friction apply. The quantity » has to be
determined. Outside the contact zone, the half-plane boundary is free from loading.

By taking into account the periodic properties we formulate the above stated problem as the
boundary value problem of the theory of two-dimensional elasticity for the half-strip (0 <x <c,
—o0 <y <0)

y=0 0,=0, 17,=0, a<x<c¢ 1y,+p,=0, b<x<a, (2.3)
y=0 u=0, O<x<b; v=—-0, O<x<a, 2.4)
x=0 u=0, 17, =0, —o0o<y<0, (2.5)
x=c u=0, 17,=0, —oc0<y<0, (2.6)

where ¢ is an additive constant and u is the coefficient of friction. The following condition of stress
equilibrium has to be satisfied

r oy(x,0) dx = —B. (2.7)
0 2

The shear stresses in the adhesive region are too small to create slippage: 7., < — po,. The normal
stresses everywhere in the contact area must be negative.
Let o(x) and 7(x) denote the contact stresses

a(x) = 0,(x,0), 7(x) = Ty(x, 0). (2.8)

The above problem can be reduced to the boundary value problem for the biharmonic function in the
half-strip

A2U(x,y):0, O<x<e¢, —o00<y<, 2.9)
32U 92U

—( = — = P ; 21
P (x,0) = a(x), Py ay(x, 0)=1(x), 0<x<eg, (2.10)

supp a(x) C [0, a], supp 7(x) C [0, al, (2.11)
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U U PU PU
——0,y)= — =0, —(0,y)= — =0, -— 0 2.12
ax(,y) o (N =0, ax3(,y) a3 (G =0, 0<y<0, (2.12)

where U(x, y) is the Airy stress function.

3. Reduction to a system of singular integral equations

Applying the finite cosine-transformation with respect to x

Ui(y) = J; U(x, y)cos fnx dx, f= %, 3.1

1 2
Uex y) = Vo) + - > Un(y) cos fnx (3.2)

n=1

to the boundary value problem (2.9)—(2.12) we arrive at the following problem for the one-dimensional
equation

((;.1)) _ ﬂz 2 ﬂ4n4) U”(y) =0, —o0 <y< 0, (33)
0,0 =2 Y00=", U,0)-0, y— - o, (3.4)

B2 dy " pn’

a

a
0, = J a(x)cos fnxdx, 1, = J T(x)sin fnxdx, n=1,2,.... (3.5)
0 0

The solution of this problem that vanishes as y — — oo has the form

(=14 npy) e yehr
2 2 O-I'l + >
n’f np

Uu(y) = n=12,.... (3.6)

Obviously, in the case n = 0 there is no non-trivial solution of eqn (3.3) under the additional condition
Uo(y)— 0, y— — oco. So that Uy(y) = 0. Next, inverting the integral transformation, we use the formulae
which connect the displacement with the Airy function (plane deformation)

19 82 82U 1 dv *U 82U 14+v
— M- Ve - ) =

v, ox “V9xT viay Yoo T TE

(3.7)

and obtain the following relationships

1 du

e = 2i cos nfix & (e + nfy)a, + (s +nfy)z,). (3.8)
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1 dv

v_*a_x(x’ V)= %g sin nfix e”ﬁJ"[( —Kk_+npy)t, +(— Ky + nﬁy)an], (3.9

where k4 = (k+1)/2, k=3 —4v.
Substituting expressions (3.5) into (3.8) we change the order of the integration and summation and
arrive at the representation for the derivative of the tangentional displacement

1 dv 2 (¢ >
- S 2 b By (e
” Bx(x’ ») : L (&) 2 cos nfix cos nfé e (k_ + nfy) d¢

(3.10)
+ % L r(f); cos nfx sin nfé &P (i, + nPy) dé.

We summarise the series in (3.10) using the formulae (1.447 1, 2) (Gradshtein and Ryzhik, 1965) and
transform expression (3.10) to the form

19 1 1
e = IS —x ST v @ de ¢ | [STE- v+ SiErx@ aE G
The tangentional derivative of the normal displacement can be calculated in a similar way

Lov 1 (* _ _ (" _

= s =S v @ de ¢ | [STE- v - STEra@ a G

v, dx ¢ )
The following notations are assumed in the relations (3.11) and (3.12)

K_ eﬁy(cos pt — eﬁy) By P cos ﬁt(l + eZﬁy) —2efr

: : (3.13)
—2ePv cos pr + ey (1 —2ebv cos fr + ezﬁy)z

St é) = *1

Ky el sin Bt By el sin pr(1 — &*F7)
1-2 C'B-V COos ﬁl + eZﬁy B (1 —2eby cos ﬁ[ —+ ezﬁ}’)z'

Szi(t, &) = (3.14)

In order to satisfy the boundary conditions (2.4), we study the behaviour of the functions (3.13) and
(3.14) as y — — 0. Expansion of the functions e’ and cos fit in the neighbourhood of the points y =0
and ¢ = 0, respectively and use of the approximation of the d-function (see Korn and Korn, 1961) yield
us

B2, 2
P (cos Bt — &) —By - 7(1 +37) + - y 1 wo(r) 1 0. (3.15)
~ ~ — _—_—~— — — _— — . .
1 — 2 eby cos Bt + e2by B2+ B+ B(2+1?) 2 B 2 7

In a similar way, one can obtain as y — — 0

By e cos r(1 +e2P) —2ebv -2 1 |: y 291

v m /
Y L _ SIS =81 =0, (.16
(] _» e/),y cos ﬂl + 62/;}!)2 ﬁ (y2 + l2)2 ﬁ y2 + t2 (y2 + 12)2:| ﬂ[ (Z) t (l)] ( )
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el sin Bt 1 pt
~— L 1
1 —2efycos ft+exfy 2 cot 2’ (317
By gi — e2By
By el sin pr(1 —e )2~ (3.18)
(1 —2ePvcos t + ezﬁ)’)
we arrive at the following integral representations for the derivatives of the displacements
1 du Ky [¢ K_ [¢
o —0) = o+ [ Ln @ ae - | e (3.19)
Vi ox T Jo ¢ Jo
1 av Ky ¢
——(x, =0) = —r_1(x) + — | [-(x, (&) d¢, (3.20)
Vi 0X T Jo
where
l+(x, &) = §|:cot g(é — Xx) =+ cot g(é + x)]. (3.21)

Let us use the third condition in (2.3) of dry friction 7\, 4+ uoy, =0, that is true on the segment (b, a).
We introduce the new function

T1(x) = 1(x) + po(x), suppi(x) C [0, b]. (3.22)

Taking into account the equilibrium condition (2.7) we rewrite formulae (3.19) and (3.20) in terms of the
functions o(x) and 7;(x)

Z%(x, —0) = x_o(x)+ —’j: JO [ (x, O)[n1(8) — po($)] de + —2’2 , (3.23)
1 ov 0 — ke (% d 3.24
ZE(X’ —0) = —k_11(x) + k_po(x) + = Jo —(x, §)a(¢) d<. (3-24)

Satisfaction of the boundary conditions

ou

9
My, —0)=0, 0<x<b v, —0)=0, O<x<a (3.25)
0x 0x

and use of the property (3.22) yield the following system of two integral equations on different segments
with Hilbert’s kernels

a b
ko)~ Pt jo e, o) aé + L L On(@) e = —0 0 <x<b, (3.26)

K_po(x) + ’% L I (x, E)o(E) dé — k_11(E) =0, 0<x<a. (3.27)
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4. Analysis of the system of integral equations

The contact problem in the half-strip (2.3)—(2.6) has been reduced to the system of integral equations
(3.26) and (3.27). Let us introduce the class of solutions. A function ¢(¢), which satisfies everywhere on
(0, ]), except possibly its ends, the Holder condition, has at the points ¢ =0 and & =/ an integrable
singularity

&) =A™, E—+0, O =40-0", E-1-0,

Aj=const, Ree(0,1), j=0,1, 4.1)
is said to belong to the class 4*-*1(0, /). The functions ¢(&), 7,(£) are sought in the following class
a(&) € (0, b) U (b, a), ©1(E) € h**(0, b). (4.2)

In other words, we admit integrable singularities for unknown functions at the points 0, » and a. In
order to define the quantities o, oy and o, a priori, we split the Hilbert kernel into the Cauchy kernel
and a regular function

1
cotx = T + B(x), (4.3)
where
X x3 22anx2n—1
B(x)=—2 — " ... oot e 4.4
) =-3-35 Qn)! ST 44

and B, are Bernoulli’s numbers. Next, we use the Muskhelishvili formulae (Muskhelishvili, 1953;
Gakhov,1966) that define the behaviour of the Cauchy type integral at the points at which the density
has a power singularity

1r2 ¢*() d¢ [em

) ey = L 50" (co +0) — cot omp* (o — 0):|(x —c)?+YVx), x—>e—-0, (45)

—oni

1r2 ¢7(0) d¢
) (€ =)’ (€ —x)
where ¢*(¢) is a function which satisfies the Holder condition on the closed segment [cy, ¢2], ¢; <co<ca,

0 =014+1i9,0<6;<1; YI(x), YO(x) are functions analytic in the vicinity of the point cy. The values of
the function (x — ¢g)™’ are specified by

= [cot ond*(co +0) — ¢*(co — 0)](X - co)_‘3 + Y(Z)(x), x—co+0, (4.6)

sin 07

(x— co)"s: Ix —col ™%, x> co, (x— co)"S =e|x —¢o|°, x<co. 4.7)
Let us assume that

(&)~ Ao, T(&)~Boy&™, &— +0, (4.8)

o(O)~AFE=b)", E—=bt0; n(O)~BF(E-b)T", {—b—0, (4.9)
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a(&)~ A& —a)™, E—a—0. (4.10)
Using formula (4.5) in the case ¢; =0, ¢p = ¢, = a from eqn (3.27) we obtain as x > a — 0
(urx— — K4 cot apm)Ar(x — a)™ = Qy(x), x—a, 4.11)
where Qqy(x) is an analytic function in the neighbourhood of the point a. Eqn (4.11) yields immediately
uK_ — Ky cotapm = 0. (4.12)
Taking into account that Ra, € (0, 1) we find

1 1 _
o =—tan"} —, y= K—. (4.13)
n Ky K+

Now we consider the vicinity of the point 5. At first, we apply formulae (4.5) and (4.6) to the analysis of
the behaviour of the left-hand-side of eqns (3.26) and (3.27) as x —b—0

Oi[TLi

|:K7_A1 — ,uK+( sifr:l oclnAT — cot (xlnA1> — K4 cot o By ](x —b) "= Q(x), (4.14)
eoclni .

|:;c,uA1_ + K+( i oclnAT — cot :xmAf) - chli|(x —b) "= Q(x). (4.15)

On the other hand, eqn (3.27) yields as x > b+ 0

KJFC*D(]TEZ'

|:(K_/l + Ky cotoym)A] — A]:|(x —b) "= Qs(x). (4.16)

sin a7

The functions Q,,(x) (m =1, 2, 3) are analytic in the vicinity of the point x = b. Consequently, the
expressions in the square brackets should be equal to 0. A non-trivial solution of this homogeneous
algebraic system with respect to 41,4, and A4j exists if and only if the determinant

A(or) = —K(r_p + K4 cot o) 4.17)

of the system is equal to 0. The equation A(x;) = 0 in the strip 0 < Ra; < 1 has a single root

o =1- 1 tan*li. (4.18)
n my

Let us consider the point x = 0. Formulae (4.5) and (4.6) and eqns (3.26) and (3.27) yield the following
system of two equations

(K — UKy cot o(077{>A0 + K4 cot OCOTHBO =0, (4.19)

(K_,u — K4 tan %)Ao —Kx_By=0. (4.20)

Since the determinant of this system is equal to x and x # 0 we see that both functions (&) and 71(&) as
well as their derivatives cannot have power singularities at the point 0. On the other hand, the physical
sense of the functions ¢(¢) and t,(£) leads to boundedness of these functions at the point 0. The same
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result can be obtained if we assume oy = 0 in formulae (4.8)—(4.10) and apply the analogue of relations
(4.5) and (4.6) for the case d = 0 (see Gakhov, 1966) to eqns (3.26) and (3.27).
Thus, the functions (&) and 7,(¢) should be determined in the class

o(&) € I %0, b) U ' (b, a), 11(¢) € >0, b), (4.21)

1 1
o= —tan"'— € (0, 1). (4.22)
n wy

Additionally, the function (&) satisfies the complementary condition

P

| oteyae=-7. (@23
0

The solution of system (3.26) and (3.27) can be constructed numerically if we split the Hilbert kernels
into two parts (4.3) and (4.4) where for large values of x we can assume B(x) = cot x — x~'. Then, the
numerical technique that was used by Spence (see Spence, 1972) for the corresponding homogeneous
characteristic system with Cauchy kernels, can be applied. We propose an analytical approach.

5. Solution of the system of integral equations

In order to reduce system (3.26) and (3.27) to a matrix Wiener—Hopf problem, we should transform
the equations with Hilbert kernels to the Mellin convolution type equations. Let us introduce the new
variables and parameters

r:tan%, t:tan%,
_..ap _ .. bp
ay = tani, by = tan > (5.1

and the new unknown functions y,(7), y,(tr) connected with the old ones through the relationships

N S ﬁ) ___ P < ﬁ)
Q) = e gE) <ta“ 2 ) O = ageye\wy ) 52
Then taking into account the identities
B o P+ s Bx 1
cotz(fix)_+t~|— P cos > =T (5.3)

as well as the condition

w2 dr Pp
z =__r 4
L a(Btan r)r2+1 1 5.4

that follows from (4.23), we reduce system (3.26) and (3.27) to the system of integral equations with
Cauchy kernels
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w2ty () 1 JbO 2t15(v) y
() — & di4+—| =22 Lde=— 0<t<b 55
/Xl() TEJ() T2—I2 T+TE 0 ‘52—[2 T l‘2+1’ <1 <Dy, ( )
L% 2ty,()
Y (1) — ya(?) + - L 2, dr = 2T 0 <1< a, (5.6)

where y was determined in (4.13) and the unknown functions are expressed through the contact stresses
as follows

(7)) = ID(1226:1—1)0<Z tan_lr), 5.7
2 2
Xz(T) = P(Tj—l)rl (E tan_l‘t). (58)

According to the analysis in the previous section, the solution of system (5.5) and (5.6) must be sought
in the class

11(x) € W70, bo) U B = (bo, ap),  7a2(x) € h*'7(0, by), (5.9)

whereas the function y,(t) satisfies the complementary condition

LO 71(v) dt = —g. (5.10)

First, extend the definition of system (5.5) and (5.6) over the entire positive half-axis using the functions
Z21+(1) and 75,.(7) so that supp y;, C [bo, 00), supp 7, C [a9, 00) and

2u [ (r) dt 2 (* yp (r) dr
y}(l_(t)——’uJ L)z——F—J L)z_:_ ZV + 04, 0<t<oo, (5.11)
T Jo N\ T 7)o N\ T ?+1
() -0
T T
t
2 -0 4 ¢
- (1) = yra— (1) + - JO 1 Nt P+l +12:(1), 0<t< o0, (5.12)
(%)
where
0@, 0<t<a (1), 0<7t<b
n-(t) = s ta-(0) = . (5.13)
0 T > a 0 T > by
Next, we introduce the Mellin transforms
1 ' 1
D7 (s) = J 11 (aor)t* dt, D5 (s) = J 1 (bot)7* dt, (5.14)
0 0
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00

O (s) = Jl 214 (bor)T’ di, @ (s) = Jl Yo (@oT)T’ dt. (5.15)

According to the behaviour (5.9) of the functions y;(r) at the point 0 and the asymptotics of the
functions y;,(t) at infinity that follow from eqns (5.11) and (5.12), the unknown functions @ (s) are
analytic in the right half-plane R(s) > —1 and d).;r(s) (j =1, 2) are unknown analytic functions in the left
half-plane ‘R(s)<2 —j. Taking into account the values of integrals (Gradshtein and Ryzhik, 1965)

xS T s J‘x’ x* T
———— dx = —— tan —, ——dx=——,, —1<RE) <], (5.16)
JO 1—x2 2 2 0 1+x2 2COS§

we use the convolution theorem (see the Appendix) and arrive at the 2 x 2 matrix Wiener—Hopf
problem. It is required to find two vectors: ®*(s), analytic in the domain D*: R(s) < yo(—1 <7, <0),
and ® (s), analytic in the domain D~: R(s) > y,, which satisfy on the contour I': R(s) =1y, the
following boundary condition

@ (s) = G(s)® (s) +f(s), seT, (5.17)
K (s) —tan D

Ge=|" () —tany . DE(s) = ( L(?)>, (5.18)

Ko(s) —p )5t @5 (s)

Ki(s)y=y+u tang, Ko(s) = py + cot g, (5.19)
by~ F(s) T

f(s) = , Fi§)= ———, 5.20

© (—aas_]F(S—l- 1)) ©) 2 cos % (320

/12@, 0<i<l. (5.21)

ap

Derive the function @] (s) from the second equation in system (5.17)

D () + ay* ' F(s 4+ 1) + p2 @3 (s)

Dy (s) = Kos)

(5.22)

and substitute it into the first one. The matrix Wiener—Hopf problem can be rewritten in the different
form

, K (s AT
I T (s) = yag ™ Fs) = K;E;; [@F(s) +ay* ' Fls + 1)] — VKO & @3 (s), (5.23)
D3 (s) + ay* " Fls + 1) = Ko()®7 (s) — pA T @3 (s), seT, (5.24)

where 7, = 1 — . In order to factorize the function K;(s), we present it as follows
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sin n(% + oc)
Ko(s) = ———=% (5.25)

. TS >
sin — sin o
2

where the parameter o is the same as that in (4.22). Further, if we use the formula

()1 —s) = (5.26)

sin 7s’

where I'(x) is the Euler integral of the second kind (the Gamma function) then we arrive immediately at
the following splitting of the function Kjy(s)

Ko(s) = K (9)K; (s), seT, (5.27)

K()F( — 5)
K{(s) = — 2 _

s\’ s\ T Sinaa
r(1—a-2 T(o+2
(1-2-3) (++3)

Next, we substitute the splitting (5.27) into eqns (5.23) and (5.24) and multiply both parts of these
equations by the function /lf‘Y*IK(J)r(s) and [K{ ()]7", respectively. Thus, we transform the eqns (5.23) and
(5.24) into the form

F(l + 5)
Ki()= —— 22 ! (5.28)

7, D5() by K (s) KA nay*~!
— - =Ky ()P (s) — - - Oy () — —75 | (5.29)
Ky (s) 0 ! cos s Ky (s) 2 2 sin s
2 2
(D+(S) na—x—l B B ,y/ls+1q)—(s)
Ki(s) - 723 PN Ky (9)@y(s) — K+—(s2)’ sel. (5.30)
0 2 sin 7K0 (s) 0

Let us find sectionally-analytic functions Q;(s) (j = 1, 2) vanishing at infinity and undergoing in passing
through the contour I' jumps

_ by~ Ki(s AKT (s
Q) - () = " O A e (531)
K (s)sin 5 cos
o —s—1
QO (s) — Q5 (5) = — 0 sel. (5.32)

2K (s)sin %S

In the case by > 1 for the function Q (s) the expansion in simple fractions takes place

©  Cf 10 (— DbV (a4 — 1)
Qfs)y=Y —L— seD", CcH="2 0 2/ 5.33
1 () ;s—Zj—i—l § j r(+1) (5.33)

Obviously, the function Q(s) admits the analytical continuation in the right half-plane D~ that is
defined by the relationship
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b—s—l
Qr(5) = Qf (s) - —=0— se D, (5.34)

2K, (: —
o (s) cos 5

which follows directly from (5.31). In the case by < 1 the function Q; (s) has the form

o) C- D~
o _ J J D_, 5.35
1 (5) j=21<s+2j—l+s+2j+2oc—2)’ s € (5.35)

e TP, S AR

- A s _ 5.36
L= ) (- D7Hr() o

and the analytical continuation for the function Qf(s) follows directly from (5.34). Similarly, for the
functions in (s) for ap > 1 we have

i (=D a0+ 1 — )
Qi)=Y —L—, seD, Ef= 0 ) 5.37
2(5) ;s+2a—2j i kol'(J) (5-37)
If ap < 1 then
o £ (=D 'TG+1-a)
Q (s) = — I _ seD”, E = 0 ? ) 5.38
2() 2¥+y / Kol () -39

J=1

The function Q; (s) for @y > 1 and the function Q5 (s) for ay <1 are defined by analytical continuation
from relationship (5.32). The corresponding representations can also be written for the functions

K](S)/ﬂfsil ’y/lHl B
—Wq’ﬁ(@’ —m‘l’z (5)- (5:39)

Although these expressions contain the unknown functions ®F(s), @, (s) nevertheless, the poles of
functions (5.39) in D™ and D, respectively, are known. In contrast with (5.31) and (5.32), the
coefficients of expansions (residues) in the presentations for functions (5.39) cannot be written down
explicitly. Let us introduce the following functions

00 AT > Bj

W) — j P (g) — 5.40
0 () ;s+2a+2j—2’ 1) ;s—i-Zj—l’ (5:40)
o0 +
+ _ J
Pi(s) = ;7‘? vy (5.41)
where
200 — 2))y 2y
Af=— G ST BE) (5.42)

so—20+2) K{(s) ’
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(s = 14+ 2)Ki(s)D7 (s)

B;=— lim , 5.43
! s—1-2j PG (5) (5.43)
— 1 X
A; —— lim (s+200—2 —:— 2N K (s)D3 (s). (5.44)
s——20+2-2j PG ()

Taking into account the class of solutions (5.9), according to the Muskhelishvili formulae (4.5) and (4.6)
and eqns (5.11) and (5.12) we establish the behaviour of the functions y; (1), z;1.(¢1) (=1, 2) as t—1£0

1-(t) = 0({ao — r}_“), T—ay—0, y (1) = 0({b0 — 1:}71”'), T— by — 0, (5.45)

114(1) = O({‘L’(} — bo}flﬂ), T—by+0, ) (1)= 0({‘5 — ao}’“), T—ag+ 0. (5.46)

Taking into account formulae (5.45) and (5.46) we use Abelian-type theorems (formulations of these
theorems are recorded in the Appendix) and arrive at the asymptotics of the unknown functions at infinity

D (s) = O(s*™), ®3(s) = O0(s®), s—o0, seD, (5.47)

O (s) = 0(s™), ®F(s) = O(s* 1), s—o0, seD™. (5.48)
Now we may estimate the behaviour of the coefficients Aji, Bjasj— o0

AF =00 ), 47 =007 ™), Bj=0(¥j ), j—oo. (5.49)
Therefore, series (5.40) and (5.41) converge uniformly in the corresponding regions

Da:C\U{seC: |s+2oc+2j—2|<a},
Dy =C\U{seC:|s+2j— 1] <e},

Df =C\U{seC:|s+20—2j|<e}, j=12,...

where C is a complex plane, ¢ is a positive number as small as desired. Thus, the functions W (s) is
analytic in DJ and the functions W (s), W7 (s) are analytic in Dy, Dy, respectively. We note that
Df > D*, Dy > D™

Subtracting from the left- and right-hand-sides of eqn (5.29) the sum W (s) + V| (s) and of eqn (5.30)
the function W{(s), we remove the poles. Now we may apply the theorem on analytical continuation.
Taking into account the behaviour (5.47) and (5.48) at infinity of the functions (I>ji (j=1,2) as well as
the asymptotic equalities as s— oo (see, e.g., Olver, 1974)

a—1 1—o
Kf(s)~ — ;q)( - ;) , seDt, Ky(s)~ (;) , seD” (5.50)

according to Liouville’s theorem (see the Appendix) we arrive at the solution of Wiener—Hopf matrix
problem (5.17)
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Zi(s) | AT K90 (s)

Of(s) = — ) + X (s) . OF(s) = K{(5)Z24(5), (5.51)
BN VO N e 2 S C) IO g

Oy (s) = K-(5) KEG) ®; (s)_EKO ($)Z1-(s), (5.52)

Zis(9) =0Qf () = ¥ () = 1), Tos(5) = C = Q5 (5) + (), (5.53)

with C being an arbitrary constant. For the functions (D;—’ (s) (j=1,2) to be analytic in the half-planes
D% it is necessary and sufficient that conditions (5.42)—(5.44) be satisfied. Substituting formulae (5.51)
and (5.52) into conditions (5.42)—(5.44) we obtain the infinite linear algebraic system of equations with
respect to the coefficients 4}, 4;, B,

2n—3+2 - A,

A=) AN C—QFQ —200—2n) — Y —— 5.54
n W\ <C 2( 04 7’1) £ 2+ 2m _2)5 ( )
B, =2"2AF [ C—Qf(1 —2n) — §Oo A, (5.55)
teh T ? L= on4+2m—20—1) '

A+ — )~2n+1_2aA_ o Q_(Zn _ 20() + i L + S Bm
n n 1 m:12n+2m—2 m:12n—|—2m—2a—1 ’

n=1,2,..., (5.56)
where
N 29, 72— 1+ a) N 2630 (n — 1)
I (n) mI(n—o+ 1)
29+ 1 —
P2 Gl k) (5.58)

k3 (n)

In order to separate the problems on definition of the coefficients 4 and B, on the one hand and the
constant C on the other hand, we present the coefficients AF, B, as follows

AF =CAG+ AN, B,=CBy+ Bu. (5.59)

nl>

The substitution of (5.59) into eqns (5.54)—(5.56) yields the system of equations with respect to the new

. + _ )
coefficients Ay Ay By

00 A+-
— _ 12n=342a A+ - ny
Ay =" “Aw( i 12n+2m—2)’ (360

m=
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l2n—|—2m—2oc—1

m=

B = )27172A+ L S A’TU 561
nj = A n ,fnj 5 ( . )

At = jti=2op— ok 4 i Ay + 3 B
nj v n nj m=12n+2m—2 m:12n+2m—2<x—1 ’

n=1,2,.... j=0,1, (5.62)
fo=1 fou=1, fi=0, (5.63)
S =—Q5Q2—20—2n), fu=-070-2n), f=-0Q72n-2a). (5.64)

This system is a normal-type infinite system (of the Poincare—Koch-type) and does not involve the
unknown constant C. Due to the particular structure of system (5.60)—(5.62), there are two effective
ways for its solution. The first one is the reduction method (see Kantorovich and Krylov, 1964)

A=) 34206 [ - Lf(m (5.65)
nj g On nj = n 4 om—2 H .
g at (o 3h A (5.66)

W W\ o 2m =20 — 1) '

" N -) B
A+- N) _ }‘2”+1_2°‘A_ + mj mj
" " ‘”j+n; 2n+2m—2+2n+2m—2a—1 ’

n=1,2,...,N; j=0,1. (5.67)

The exponential convergence of an approximate solution to the exact one is assured by the exponential
decay of the non-diagonal elements of the matrix of system (5.65)—(5.67). In a number of cases it is
convenient to convert system (5.60)—(5.62) through recurrence relations. We represent the coefficients

A%, B, as expansions in the parameter 4
00 o0
A = 23424 Z ay )2 g 2 Z b i 22, (5.68)
=1 k=1
00
A,J{,- _ o Za%izkle (5.69)
k=1

Substituting the last relationships into system (5.60)—(5.62) we get the simple recurrence relations

iy = D5, f s bty = AT, o, (5.70)

nlj nj>
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a, : b .
_ A 2 1—20 S pk+1—p,j pk+1-p,j k=12 . 571
G = Do | 27 "1+Z<2n+2p—2+2n+2p—1—2a : o G.71)

= —AL i) ks k=23,... 5.72
ankj 0}122n+2p 2 "/»/ ln22n+2p_1 20(9 s s s ( )

where Jy; is Kronecker’s symbol. Formulae (5.68)—(5.72) yield full, rapidly converging asymptotic
expansions on A for the coefficients A and B,. The sequence of the calculations of the elements of
series (5.68) and (5.69) can be presented as follows

{@n) b"]i}:>{a2—1j’ Ajs b”Zi]:>[a:2j’ Ay bn3j}:> e, on=12000 j=12 (5.73)

Now define the constant C. From additional condition (5.10), as a consequence of (5.14) we deduce

®7(0) = —2%0, (5.74)

On the other hand, taking the limit as s — 0 we obtain from (5.52)
—0;(0) + C+ ¥ (0) = —%Ko_(O). (5.75)
0

Taking into account (5.59) we have

00 A+

T o mj
Zagl“(oc)i|’ % =20 —2m’ (5.76)

C— 1+ [Q ©0) —

The definition of the constant C completes the solution of the 2 x 2 matrix Wiener—Hopf problem.
Applying inverse Mellin transforms to formulae (5.51) and (5.52) we obtain the solution of the system
of integral eqns (5.5) and (5.6)

1 t —s—1
1 (t) = —J (Dl(s)(> ds, 0<t<a, (5.77)
27i Jr a

1 A
12(1) = Ti Jr ) (S)<b_()) ds, 0<t<by. (5.78)

These integrals will be calculated in the next section.
In conclusion, we give a summary of the main steps of the algorithm of the solution of system (5.5)
and (5.6) that can be applied to a system of the Mellin convolution-type equations on different segments

(0, ao), (0, bo)

o ¢ d by t
ap (1) + any(t) +J I (r)XI(T)rT +J 112( >,{2(T) =/fi(t), 0<t<a, (5.79)
0 0

“ t dc [
a0+ a0+ [ (L)@ F + [ ()@ <p0. 0<i<m (5.80)
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We suppose that the Mellin transforms of the functions I, are meromorphic and without loss of
generality that 4 = boay! < 1.

1. Extrapolation (5.11) and (5.12) of system (5.5) and (5.6) over the positive half-axis and calculation of
the Mellin transforms of the kernels of system (5.11) and (5.12).

2. Transformation of the first equation in system (5.17) to form (5.23), in order to remove the product
of the unknown function ®j(s) that is analytical in D~ and the term 2™~ that has an essential
singularity at infinity in D~.

3. Factorization (5.27) of the function Ky(s), the function that is in the lower left-hand-side corner of the
matrix G, either in an explicit form as (5.28) or in terms of Cauchy integrals (sece Gakhov, 1966).
Reduction of the system to form (5.29) and (5.30).

4. In the case of the non-homogeneous system (5.79) and (5.80) (fj(f) # 0) replacement of the known
summands in (5.29) and (5.30) by the difference of the boundary values of two functions (5.31) and
(5.32) which are analytic in D™ and D~, respectively (using the Sokhotski—Plemelj formulae, for
example).

5. Specification of the poles of functions (5.39), introduction of functions (5.40)—(5.41) and delimination
of the poles via the subtraction of these functions from both sides of system (5.29) and (5.30).

6. Application of Abelian-type theorems and Liouville’s theorem and definition of solution (5.51) and
(5.52) that contains unknown coefficients [residues (5.42)—(5.44)].

7. Solution of the infinite algebraic system (5.60)—(5.62) either by the reduction method (5.65)—(5.67) or
in terms of the recurrence relations (5.68)—(5.72). Due to the presence in matrix (5.18) of the terms

275"V and 2**! (1 should not be equal to 1), the convergence of both methods is exponential.

8. Inversion of the Mellin transforms and definition of the solution of the system of integral equations.

=2

. Physical quantities
6.1. Definition of the length of the slipping zone

In order to solve the contact problem completely, we must find the position of the point b, the point
of transition from slippage to bonding. Let us introduce the stress intensity factor

Ny = h?lo(b - x)lﬁ(rxy + uoy)(x, 0) (6.1)

and require that N, =0, i.e. that 7., 4+ uo, =0, x = b, y =0. Then the contact stresses 7., and g, will
remain bounded in the vicinity of the point b. Note that the condition N, = 0 is equivalent to the Galin
condition (see Galin, 1945) as well as to the results of Spence (1973) and to the proof of Dundurs and
Comninou (1979) of boundedness of the stresses at the point of transition from Coulomb friction zone
to adhesion.

Since the function y,(¢) belongs to the class (5.9) we may write

72()~N(bo — """, t— by — 0, 6.2)

where N is a constant. Taking into account formula (5.8) we immediately get

a—1 oa—1
r](x)~$ tan@ —tanﬁ—x PN E(b—x) , x—b—0. (6.3)
Bb 2 2 Bb |2
2c c0527 2c cosz‘*?
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Using Theorem 2° (Appendix) and the second formula in (5.14) we arrive at the asymptotic equality

(oc)

5 (s)~—=NbZ', s—o0, seD . (6.4)

On the other hand, due to (5.52) and (5.50), the behaviour of the function ®;(s) at infinity can be
written as follows

()~ 21_%%( 0= Y Ay — ZB,">, s—o00, seD, (6.5)
m=1 m=1
where the constant w( defines the behaviour of the known function Q{ (s) at infinity
Qf ()~ %, s— o0, seDT, (6.6)
[o¢]
Z bo > 1

o8
ZC + D), by <1

Therefore, the stress intensity factor N, is defined by

P b l—o o0
N, = ( 0//5)) [wo - > (4, + Bm)] (6.8)
2¢ 0052“7))*1“(05) m=1
0.1 T T T T T T T T T

0.08} ;

|

i

0.06 '

0.04

0.02

-0.02

(o]

Fig. 2. Stress intensity factor N,/P vs b(—, ¢c/a =5; - --, ¢/a = 10; - - -, ¢/a = 1000).
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We assume in all subsequent numerical examples that v = 0.3. The graphs of the stress intensity factor
P~'N, as a function of b for some values of ¢ and u = 0.3 are shown in Fig. 2.

In order to have the tangential and normal contact stresses continuous at the point x = b, it is
necessary and sufficient that N, = 0 or, that it is the same as

o0

> (4, + By) = wo. (6.9)

m=1

The last equality is a transcendential equation for A that is equivalent to N, = 0. This equation may
have a denumerable set of roots with an accumulation point at 1. According to the results of Spence
(1973) only the first root gives the solution of the physical problem. We will note this root as 4. Due to
/.= boay! and formula (5.1), the quantity b that defines the length of the zone of slip is defined by the
relationship

2 >
b= tan"! (xl tanzl) (6.10)
n 2¢

The normalised length of the adhesion zone 2b/a depends only on Poisson’s ratio v, the coefficient of
friction p and the parameter (¢ — a)/a, where a is the length of the punches and 2(c — a) is the distance
between the stamps. The dependence of the normalised half-length A = b/a of the adhesion zone on the
normalised distance (¢ — a)/a between stamps for the cases = 0.1, 0.2 and 0.3, is graphically presented
in Fig. 3. As it can be seen from the graphs, the adhesion zones increase as the stamps approach each
other. On the other hand, if ¢— oo then A — A,, where A4, is the corresponding parameter for the
problem for a single stamp. For example, for u=0.3 and (¢ —a)/a=5, 10 and 1000 we have the
following values of A:

0.8272, 0.7731, 0.6901,

09 ! ! ! ' '
0.8L - N ............... ................... L _
07k ‘—___—__“‘————————————_
ok e S R R
041 o T ?.:.—“-.,__,_1.__.._“_‘_,_,_,,_'__ _,v,_,v_.,_v.f;._. ]
S IR o o

0.2

0.1

1 1 1 1

1
0] 10 20 30 40 50 60

0

Fig. 3. Dependence of the half-length b/a of the adhesion zone on (¢ —a)/a (—, u=0.1;- - -, u=0.2; - - -, £ =0.3).
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0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(o]

e
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 4. Dependence of the half-length b/a of the adhesion zone on the friction coefficient u (—, ¢/a=35; - - -, ¢/a=10; - - -,
¢/a = 1000).

respectively. In the case ¢ = co for ¢ = 0.3 the value of the length of the adhesion zone is known: A, =
0.695 (Galin, 1945). Thus, the length of the adhesion zone does not coincide with the corresponding
value which produces the homogeneous system for the problem on a stamp with a horizontal base. That
is similar to the problem on a stamp with non-plane profile pressed onto a half-plane under conditions
of friction and adhesion (Antipov and Arutyunyan, 1992): a right part of the basic system of integral
eqns (5.5) and (5.6) influences on the sliding zone length.

The dependence of the length of the adhesion zone on the friction coefficient u for the cases ¢ =5, 10
and 1000 is shown in Fig. 4. As we can observe in this figure, the curvature of the graphs increases with
a decrease of this distance c.

6.2. Stress intensity factor at the edge point

If b is selected as (6.10) then it follows from (5.51) and (5.52) that the solution of the system of the
functional equations has asymptotics

of(s) = 0™ 1), @f(s)=0(*"), s—o0, seD, (6.11)

O (s) = 0(s*™), ®y(s)=0(*"), s—oo, seD. (6.12)

Applying Theorems 2° and 3° (Appendix) we find the asymptotics of the contact stresses and the
tangential derivatives of the displacements in the neighbourhood of the singular points

Ty(x, 0) = O{(a — x)’“}, o,(x,0) = O{(a — x)’“}, x—a—0, (6.13)

(Txy + Hoy)(x, 0) = olb-—x)}, x—>b-0, (6.14)
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ou o av . —a
a(x,O):O{(x—b) L, x>b+o0, a(x,O)_O{(x—a) L, x—a+0.

2115

(6.15)

At the point x = b the contact stresses are continuous and their first derivatives have a power
singularity. The normal stress intensity factor at the edge point

K, = lim 0(a — x)*o,(x, 0)

is computed similarly to (6.1). Since the function y,(¢) behaves at the end point as

1O ~M(ay— 1), t—ay—0, M = const,

for the normal stress a(x) we can write that

PM -
a(x)~7ﬁa|:§(a—x)i| , x—a—0.
2¢ cos2—2“7

If we take into account the asymptotics of the function ®; (s)

(1 —
<D1’(S)~(S17_f)Maa“, s—00, se€D,

N

oa—1
<D1_(.9)~C<2) , §—o0, se€D,

that follows from Theorem 2° (Appendix) and (5.52), respectively, then find the constant M

-0.22 T T T

-0.222

-0.224

-0.226

-0.228

_023 . '\.. ...... R R ................ ...............................................
_0.232 L L 1 1 |
0] 10 20 30 40 50 60
Fig. 5. Stress intensity factor K,/P vs (c—a)/a (a=1; —, u=0.1; w=02; -, u=0.3).

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
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—0-22 f ! f ? ' ' '
-0.222
-0.224
—-0.226
-0.228

-0.23
—-0.232

-0.234

-0.236

-0.238

L 1
(o] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 6. Stress intensity factor K,/Pvs u(a=1; —, ¢=5;---, ¢=10; - - -, ¢ = 1000).

_2gC

M_F(l—oc)

6.21)

and therefore, from (6.16) and (6.18) we get

PCaj 2q_n Ba

Ky= % .
FTA—0) " 2

(6.22)

For the tangential stress intensity factor in view of Coulomb’s law of dry friction, we obtain
L,= lim O(a — X)*Ty(x, 0) = —uK,. (6.23)
X—a—

In Figs. 5 and 6 the values of the stress intensity factor K, are presented for different values of the
friction coefficient and the parameter ¢. As it can be seen from Fig. 5, the factor |K,| increases when the
stamps approach each other. In other words, the presence of other stamps increases the stress intensity
factors of both contact stresses.

6.3. Contact stresses

The contact stresses o(x), 7(x) are connected with the function y,(#), y,(x) by formula (5.2) and (3.22).
Let us find the function y,(¢). According to formulae (5.77) and (5.52) we have

1) =L+ Vllz(l), (6.24)
RN EER HOEOIOTEA TS
Li(1) = i Jr K- (5) <a—0> ds, (6.25)
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1 [ Qi) —¥y(s)—Pr(s)/ ¢\
(1) = — 1 0 1 x . 5
2D =75 JF K{ () bo ds (6.26)
Taking into account formulae (5.32) and (5.27) we get
Lo =10 +170), (6.27)
1 —s—1
1) = __.J rds (6.28)
4koi Jr . s
sm7n| < +a
(3+2)
1 [ K¢S C+W¥i(s)—QF -5l
1P(0) = —J (O +[CHY ) =B @] () (6.29)
2mi Jr Ko(s) do

The first integral 1 (l])(t) can be calculated by direct application of Cauchy’s theorem
lZot—l

](1) H=e —
v ko(l + 72)

(6.30)

The integrand in formula (6.29) has poles in DT at the points s = —200—2m+2 (m =1, 2,...). Using
the theory of residues we have

@ ) 00 00 A»+ ¢ 204+2m—3
IP0) =" Tl C=QTQ—-20—-2 — |- , 6.31
0= 01[ £ -2 m>+;_2m_zj+2](%) (631)
where
I'm—14+0a)
Top=—r—-—""-. 6.32
0 o) (6.32)

According to formula (5.54) and to (6.30) we transform expression (6.27) to the form

1 tZoc—] Y o0 A~ t 20+2m—3
L(t) = —— + — | — . 6.33
12 K0|:1+12 V*m; F0n7<bo> (6.33)

In order to calculate the integral I,(f), we consider two cases: 0 <t < by and by <t < ay. On using
(5.31), in the first case we have

b = =5 =180 + B0, (6.34)

where

s
tan=—r—"1 ds
2

1
10 = 5 J , (6.35)
i Jr . s
sin n(z + oc)
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2118
1
192G J
o) = 2ni
0<t<by.

By a similar way

(1)( ) —

1P(1) = i[/;

2(x

(1 + %) °

j=1

K5 ()

1

tZot—l)

(Z/b )20(4*2]'73

J

(t/bo)¥ 2

¢ —s—1 o 00 A
(b_0> l(é)_j:le+2oc+2j—

T Kf(—200—2j+2)

Thus,
7, [20(—) 1
L(t)=— 1-— 4+ =
2) y(1+t2)( Ko ;
r(j—1
0 <1< b, r1j=,072)1.
T(j—a+3)

In the case ¢t > by we have

2 o0 o0
L(t) = E_K%n;rm [91 Qm —20) — Z 5

+2] 2 Z2m~|—2]—2cx—1

T, =

L'(m)

The expression in the square brackets in (6.41) can be simplified with the help of (5.56) and then

_ e A4
L(1) = 72 T,

m=1

(1) = —

(1) = —

o0

R =y

m=

1

1+1¢

20—

+

m

+
m

1

I'm+1—o0)

TKI(=2j+ 1)

- 20+2j—3
+
Lo <b0 )

A_

20—2m—1
( ) , by <t<ap.
ao

Substituting (6.33), (6.39) and (6.43) into (6.24) we arrive at the formulae

o0 2m—2

v B, (1

— — , 0<t<by,
K0V« mZ::I 1—‘lm (b())

ko(1 + 2)

t

<

do

+ Ri(1) — Rao(2), bo <t < ay,

200—2m—1
) , Ro(t) =

[e¢] A7

m
KOV* m=1 FO’”

G

t
bo

ﬁ(i)zj_z
T\ bo '

B;

>2x+2m—3

G

t
bo

_ J d
2 ;sz—l} .

20—2m—1
) 2

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)
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The contact stress o(x) is given by

a(x) = F [3 —= <tan BX), 0<x<a. (6.47)

2¢ cos2 =

To calculate the tangential stresses we use formulae
(x) = 11(x) —po(x), 0<x<b, t(x)=-—-uo(x), b<x<a. (6.48)

Therefore, we have already found the function t(x) on the sliding zone. Let us consider the segment
0 < x < b. From (5.2) and (6.48) we have

T(x) = izﬁzx [}52 (tanﬁzx> — Uy (tanﬁzx>], 0<x<b. (6.49)

2c¢ co

We substitute formulae (5.52) and (5.53) into (5.78) and find
1 7 _ _ B t —s—1
1(0) = iy J Ky (9)[Qr(s) =¥y (s) =¥ (9)] <b—0) ds. (6.50)

As in the case of the function y,(7), we continue analytically the function Qj (s) in the half-plane D" and
from (5.31) we get

s
“J (-1 ds 1 J cot3+cotmc

1) = -1
2 4i Jr cos ™ 2miy, K (s)
(6.51)
00 AT 00 B ¢ —s5—1
Qf (s) — —_—t — - ds.
X[ 1) ;s+2a+2j—2 ;sz—l bo y
Application of the theory of residues yields us
M 2 o0 2m—1 N 0 Bm < ¢ )ZmZ
() = ———— T, Q7 (—2m )+ —
72( ) 1 + lz K0 & mzl n( ) VKo Z Flm b()
2 00 00 AT B, ¢ 2m—1 (652)
ZFmZ( .j + N . )(_> s
ny*;co I 20+ 2j—2m—2  2j—2m—1)\ by
where
—1)’b, 7T
Qf(—2m) = _“g* Z %]2’ bo > 1, (6.53)

=1

00 . Iy P21,
QF(—2m) =25 (= 1)/p¥ 2| K00 u 00 bo < 1 6.54
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C(e+j—1
Y= (—112‘) (6.55)
r(j+3)
Now, using formulae (5.44) and (6.52) we arrive at the expression for the function y,(7) — uy;(?)
¢ 2m—1
1a2(t) — () = — Z Q0 (- Zm)( >
TKOY o
. (6.56)
o) m—1 0o AT B:
Z ( ) Z _J + - / ], 0<t<by.
mcoy* — = at+j—m—1"j—m—;
The stresses t(s) in the adhesion area are specified by
P
(X)= ————| tanﬁ—x — Uy tanﬁ—x , 0<x<b. (6.57)
Px 2 2
2¢ cos? >

6.4. Behaviour of the contact stresses in the neighbourhood of the point b

Taking into account asymptotics (5.49) of the coefficients A}, B, we notice that as r— by + 0 the
series R;(f) converges slowly. In order to study the behaviour of the function o(x) in the right vicinity of
the point 7=b, we use (5.56) and express the coefficients A, in (6.46) via the coefficients A;, B;. Then we
change the order of summation and get

t2a—l ,))1—*(2 _ OC) ¢ 20—3
Ri(t) = — — 6.58
(1) ko(£2 +1) Ty, (bo) (6.58)

x| A Fyle BiF>; C/F
xS "( ), BF 21(’)1 - £y )rzjg,(r) bo > 1, (6.59)
= I —at+s 3—J—

_ 20—3 0o i .
R =20 () Z[(AHD,-‘)—FI}(”+(Bf+Cf)j—FZ(f1} <t

TV« Kp j=1 - 2
where
. b
1 3 b
ng(l)=F<2—OC,_j—OC+2;.]'—OC+2;120), (661)
3 5 . b?
ng(t):F(2—oc,2—j—oc;2—]—0(;lg), (6.62)

F(a, b; c; x) is a Gaussian hypergeometric function. We introduce the function
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b2
Jvi 1) = F<2 —Bviv+1; t—f) (6.63)
and express the functions F;(¢) in terms of this function
Fi() =30 0, Fy()=F(—a+31)., Fy0)=F(—j—a+3:1). (6.64)

The function F(v; r) admits the following presentation in the right neighbourhood of the point ¢ = by
[see formula 9.131(2), Gradshtein and Ryzhik, 1965]

_ 2v 7 \2—1
F(v: 1) = %{;(ﬁ”” <b—to> +- - - <1 - %) (e — DF (1), (6.65)
where
oo 1 0°(v—1+oc)j<1_b_(2)>./’+a—1 o

At the first sight, the function R;(¢z) has a power singularity as ¢t — by + 0. But if we take into account
that for the root of eqn (6.9)

[o.¢]
(4 +B-Cr)=0. b>1 (6.67)
=1
and
o0
(47 +B;+C; +D;)=0, by<l, (6.68)
=1
we get for by <t <a

1 ZZoz—l Y t 20—3 00 B 1 t 2j .
Rl(z)z—w( — —1>+Koy*(b—0) Si4 r—w<b—0> L0 )

J=1

1 ¢ \Z-2etl 1
+B; F_l(b_o) +i‘s*<j—a+§;1) + Wio) (6.69)
]
where
Wit) = —C}Li‘y*(% —j—ot), bp>1, (6.70)
Wi)=D; FG:)+C;§(+5—wt1), by<l1. (6.71)

Thus, we arrive at boundedness of the function y,(¢) at the point by. Hence, the contact stresses a(x) are
bounded at the point b. For the sake of completeness we have to prove that the stresses o(x) are
continuous at the point of transition from slippage to bonding. Since F*(v; by) = 0 the limit expression
R;(by 4+ 0) can be written as follows
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Fig. 7. Distribution of the contact stresses along the contact zone (0 < x < a) for the following parameters: a = 1, u=0.2
(—, — Pl (x,0), c=5;---, =P7a,(x, 0), ¢ = 1000; - - -, P 7,,(x,0), ¢ =5; -+, P 1y(x, 0), ¢ = 1000).

b(Z)ocfl 1 Y 00 A/_ B/

Ko(b% =+ 1) b% + 1 V<Ko = roj Flj

Ri(by +0) = (6.72)

in both cases by > 1 and by < 1. Substituting this formula into (6.45) and comparing it with (6.44) we get

0.6 T T ! 0.45 T
0.4

0.35

0.25F - . |
O.2F v 4
0.2F AR : B b 0.15 - : : :

0.1

0.05

Q . : Q
0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6

Fig. 8. The contact stresses in the neighbourhood of the point b (a = 1, u = 0.2).
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1 V = B,
/(bo +0) = 7,(by — 0) = — + , 6.73
a4 0) =0y~ 0) =~ 4 LS 2 673
Bm oa—112m
r—:O(m M), m—oo (0<i<l). (6.74)
Im

In a similar manner, it may be shown, that the tangential stresses are continuous at the point b. The
derivatives with respect to x of the stresses o,(x, 0) and 7,,(x, 0) have a power singularity at the point b.

In Fig. 7 the graphs of the normal and tangential stresses for the cases ¢ = 5 and ¢ = 1000 when
u=0.2 are shown. These plots are in good agreement with the corresponding curves of Spence (1973):
the graphs of stresses have a salient point under transition from bonding to slippage. It should be noted
that the analytical formulae (6.44)—(6.46), (6.69) and (6.73) allow us to calculate the values of stresses
with high exactness at the salient point . The scaled graphs of the contact stresses —P~'g(x) and
P~'7(x) in the neighbourhood of the point 4 for the same parameters as in Fig. 7, are presented in
Fig. 8.

7. Conclusion

We have solved analytically the contact problem for a periodic system of stamps with friction and
adhesion. The problem was reduced to a system of two singular integral equations with Hilbert’s kernels
and then to a 2 x 2 matrix Wiener—Hopf problem that was solved efficiently. It was shown that this
technique admits generalization for a system of two Mellin convolution-type equations on different
segments if Mellin transforms of the kernels are meromorphic functions. Dependence of the sliding zone
length on the distance between stamps and the friction coefficient was studied. The length of the
adhesion area and the stress intensity factor at the edge point increase when the stamps approach each
other. It has been shown that the contact stresses are bounded and continuous at the point of transition
from slippage to bonding.

Acknowledgements

The work was supported by the Alexander von Humboldt Foundation (Germany) and the U.K.
Engineering and Physical Sciences Research Council (EPSRC), Grant No. GR/K76634. The author is
grateful to W. L. Wendland for making it possible to carry out the research project at the University of
Stuttgart. Thanks are also due to A. B. Movchan and O. Y. Zharii for useful discussions and both
referees for their valuable comments.

Appendix: the basic theorems

Theorem 1° (the Mellin convolution theorem, Titchmarsh, 1948). Let x*f(x) € L(0, oo) and x"g(x) €
L(0, c0) and let

h(x) = JO f(y)g<§>dy—y (A.1)

then x*h(x) € L(0, oo0) and its Mellin transform H(s) is equal to F(s)G(s) with R(s) = k + 1 where
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oo}

| H(s). G(s). Fs) = L 1), ) Sl d. (A2)

Theorem 2° (the first Abelian theorem, Doutsch, 1950). Let
fx)~A0 —x)", x>1-0, (A.3)

where 4 = const, R(a) > 0 and the integral
1

F(s)= J Sx)x* dx (A.4)

0

is an absolutely convergent function in the half-plane R(s) > x. Then the behaviour of the function
F~(s) at infinity in this half-plane is defined by

AT (o)

_ Y
Fr()~—7— s— oo, Iarg(s)|<d>o<§. (A.5)

Theorem 3° (the second Abelian theorem, Doutsch, 1950). Let

f)~Alx =1, x> 140, (A.6)

where 4 = const, R(a) > 0 and the integral
Ft(s)= J Sf(x)x* dx (A7)
1

is an absolutely convergent function in the half-space R(s) < k. Then the behaviour of the function
F™*(s) at infinity in this half-plane is defined by

AT (o)
(=)
Theorem 4° (Liouville’s theorem, Gakhov, 1966). Let the function F(s) be analytic in the entire plane

of the complex variable, except at infinity, where it has a pole and suppose that the principal part of the
expansion of the function F(s) at infinity has the form

FT(s)~

s — 00, |arg(—s)|<dy < g (A.8)

Co+ Cis+ Cs* + -+ - + Cps®.

Then the function F(s) is the polynomial of degree x: F(s) = Co + Cis+ - - - + C,.s® everywhere in the
plane. In particular, if the function F(s) is a constant at infinity then it is that constant in the entire
plane.
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